Module Overview

All the 2D view controls, such as Fit View, Zoom In and Out, Window Area, and Pan, can be used in 3D. As in 2D, elements to the left, right, above, or below can be excluded from a view by zooming in or windowing so that the elements are outside the view's area.

There are also a number of 3D specific viewing tools. 3D views have depth. You can exclude the display of elements located in front of, or behind, an object by applying a Clip Volume or Clip Mask.

It is a good idea to practice View Control tools for 5 minutes at the start of every 3D session, before doing any other work.

Module Prerequisites

- Knowledge of MicroStation 2D view controls

Module Objectives

After completing this module, you will be able to:

- Use 3D view control tools to navigate in 3D space
Introductory Knowledge

Before you begin this module, let's define what you already know.

Questions

1. True or False: You can view a 3D design from any direction and even move inside it.
2. Define a MicroStation model.
3. In 2D models, you work on a design plane. What is the working area in 3D?

Answers

1. True.
2. Each model is an independent graphical space, with its own origin point, units of measurement and can be 2D or 3D.
3. In 3D models, the 2D design plane becomes a 3D cube, known as the design cube.

View Rotation

When you work in a 2D model, you can rotate the view. Visually, this is like rotating the xy-plane about a perpendicular, or z-axis. When you are working in a 3D model, you can rotate the view about any axis (the x-, y-, or z-axis). The visual effect on screen is like rotating the design cube. You can rotate any view to a standard rotation or to any arbitrary view orientation.

When you dynamically rotate a view, you can use any of the following methods.

Using the mouse
- Shift key + middle mouse button to Rotate about Center
- Pressing the left mouse button completes the rotation

Using a tool
- View Rotation tool
• Standard View Rotation

These tools require a data point to start and a second data point to complete the rotation.

The Rotate View tool

Access to View Rotation is found in the view control toolbox at the top of each view window. You can also use keyboard mapping, pressing 4 + 6 + 1 to activate the Rotate View tool, or select Tools > View Control to open a floating toolbox.

Use view rotation to rotate a model to access a face that would otherwise be behind another. The tool settings have two options that control the method of rotation.

Cube rotation rotates the view as follows:

• Moving the pointer up or down rotates the view about its x-axis
• Moving the pointer left or right, when Preserve World Up is:
 Enabled: Rotates the view about the model’s z-axis
 Disabled: Rotates the view about its y-axis
Sphere rotation rotates the view about a center point. A dynamic sphere, and associated graphics, help you define the rotation. Slide settings let you control the size and transparency of the sphere as follows:

- Small/Large slide control: Lets you define the size of the sphere graphic in the view
- Opaque/Clear slide control: Lets you define the transparency of the sphere in the view

Exercise: Rotating a view using the Cube option

1. Set the following in the File Open dialog:

 * **User**: examples
 * **Project**: General

2. Open Solids.dgn.

3. Open the Booleans model.

Hint: You can right-press (right-click and hold) on the geometry in the Index model and select Exchange.
4 Select the Rotate View tool from View 1’s view control toolbox, with the following tool settings (click the Show Extended Settings arrow to view the settings for Rotation):

Method: Dynamic

Cube rotation

Preserve World Up: Disabled

Crosshairs appear in the center of the view, denoting the center of the rotation.

5 Enter a data point on the right side of View 1.

The pointer changes shape and the crosshairs become a small crosshair.

6 Move the pointer to rotate the view interactively.

Note that moving the pointer vertically rotates the view about its horizontal (x) axis. Moving horizontally rotates the view about its vertical (y) axis.

7 Reset.

This cancels the rotation and returns the view to its original orientation.

8 Select the Rotate View view control with the following tool setting:

Preserve World Up: Enabled

9 Enter a data point on the right side of View 1.
10 Move the pointer to rotate the view interactively.

Note that moving the pointer vertically rotates the view about its horizontal (x) axis. Moving horizontally rotates the view about the model’s (z) axis. This has the visual effect of spinning the model about its vertical (z) axis no matter what the rotation of the view.

11 Enter a data point to complete the rotation.

Exercise: Rotating a view using the Sphere option

1 Continuing in Solids.dgn, in the Booleans model, select Rotate View with the following tool setting:

 Sphere rotation

Crosshairs appear at the center of the view and a shaded sphere surrounds them.

2 Use the Small/Large and Opaque/Clear sliders to adjust the size and transparency of the sphere as desired.

3 Following the status bar prompt, enter a data point somewhere within the region of the sphere.

 The crosshairs are replaced by a small crosshair.

4 Move the pointer to rotate the view about the center of the sphere.

 The arrow graphic that appears on the sphere gives you a visual indication of how you are rotating the view.

5 Enter a data point to complete the rotation.
Rotating to a standard view

The standard view orientations can be selected from the Rotate View tool’s drop-down menu in each view window. You can also use keyboard mapping key-ins, or you can open the View Rotation tools as a toolbox. Remember that when you use key-ins, or use the view rotation tools from the toolbox, the tool applies to the active view.

→ Exercise: Rotating to standard views using various view control options

1 Continuing in Solids.dgn, in the Booleans model, open Views 2, 3 and 4 and Fit View in each.
2 Select Window > Tile.
3 Select Rotate View (4 + 6 + 1), with the following tool setting:
 Method: Top
4 Following the status bar prompt, enter a data point in View 1.
 You can continue to enter data points in other views to change them to a Top rotation.
5 Click Rotate View to open the drop-down menu and select Open as ToolBox.
6 Click the title bar of View 3 to make it the active view.
7 In the View Rotation toolbox, select Right View.
 View 3, the active view, is rotated to a Right view.
8 Click in the title bar of View 2 to make it the active view.
9 In the View Rotation toolbox, select Front View.
10 Click the title bar of View 4 to make it the active view.
11 With focus at Home, press 4 + 6 + 5 to rotate View 4 to Isometric.

Rotating a view using the mouse

The mouse wheel or button can be used for several view controls. As in 2D, you can double click the wheel to Fit View. Single click the wheel for a dynamic view Pan. Roll the wheel to Zoom In and Out.

You can rotate the view using the mouse and the key-in ROTATE VIEW DRAG.

→ Exercise: Rotate view about center

2. Release the buttons and drag the mouse.

3. Enter a data point to complete rotation, or reset to return to the previous rotation.

4. Click View Previous to return to the previous rotation.

The crosshairs now are located at the left vertical edge of the geometry.

Exercise: Rotate about any point

As you move the pointer to rotate the view, note that rotation now is around the defined point.

2. Move the pointer over the plus sign at the center of the sphere to relocate the point about which to rotate.

3. Move the sphere to the lower right and note that you can snap to objects.

4. Enter a data point to complete the move of the rotation sphere.
5 Following the status bar prompt, begin rotation.
6 Enter a data point to complete the rotation.
7 Return the view to Isometric.
8 Fit View.
9 Select File > Close.

You can rotate the view using the mouse and the key-in ROTATE VIEW FROM CURSOR.

Additional 3D mouse view controls are:
• Shift key + roll is Pan with Zoom
• Ctrl key + middle button click is Rotate about point
• Ctrl key + roll is walk forward/backward
• Alt + roll is Pan left or right

Fitting 3D Views

In both 2D and 3D models, the Fit View tool lets you select whether the fit applies to elements in the Active file, References, Rasters, or All files associated with the view.

• When you fit a view in 2D, the area of the view is altered to display all elements located on the levels currently turned on.
• In 3D models, there are more choices relating to the clipping planes.

• All - Display all displayable elements in the active model file and any attached references.
• Active - Display all displayable elements in the active model file.
• Reference - Display all displayable elements in attached references, if any.
• Raster - Display all displayable elements in attached raster references, if any.
Clip Volume

During a design session, you may want to work on a particular element and rotate it to view from various angles. When you do this with clipping planes set, however, parts may disappear or other elements appear in the display depth. MicroStation’s Clip Volume tools let you select a discrete volume, within the design cube, for display.

This tool is helpful when you have elements on the same level and you do not want to see all of them.

When a clip volume is applied to a view, only elements that are located within the clip volume will display, or can be snapped to, in that view. Each view may have a different clip volume applied, since it is a View Attribute.

You can use 2D or 3D elements to define the volume. When you use a 2D shape, the clipping volume is created by sweeping the 2D shape through the entire model. The sweep direction is perpendicular to the plane of the 2D element. MicroStation creates a 2D clipping shape using active attributes.

When a 3D element is used, it defines the entire clip volume.

Before Clip Volume
Operations, such as view rotation, fence processing, hidden line removal, and rendering, honor the clip volumes. They ignore any elements that are not displayed within the defined volume for the view.

Clipping elements may consist of any solid, other than spheres or feature solids. Closed extrusion, cylinders, or closed planar elements (shapes, circles, ellipses, complex shapes, grouped holes) can be used. If a planar element is chosen, or you use the clipping elements by points options, the clipping volume is generated by sweeping the planar element through the entire model. Planar elements may be selected in any view, because the sweep direction is orthogonal to the plane of the element. Similarly, clip elements that you define by points may be drawn in any view. AccuDraw can be used to set the correct orientation of the clip element.

The Clip Volume tool is a 3D View Control and can be found on the View Border. If you click and hold the icon you will there are other tools here:

- Clip Volume
- Show/Hide Active Clip Volume
- Delete Clip Volume
Set Clip Volume options using icons in the tool settings.

- By Element applies a clip volume from an existing element.
- Section Clip Tools
- By 2 Points lets you apply a clip volume by defining a rectangular clipping element with 2 data points
- By Polygon lets you apply a clip volume by interactively defining vertices of a polygon with data points. The polygon can be closed by entering a data point at the start point, or by clicking the Close Element button.
- Apply Fitted Clip Volume creates a clip volume that encloses all the elements in the model.

In addition, there are two check boxes:
- Display Clip Element, if on, the clip element remains displayed after creating the clip volume for the view. Display of this element can be turned on or off later, with the Show or Hide Clip Volume Element icon.
- Create Dynamic View - Allows you to create dynamic views automatically by opening the Create Dynamic View dialog.

Clip Volume Extended Options are set at the bottom of the tool settings.
- Apply Clip Volume from Named Fence creates a clip volume from the named fence, selected from the list, and applies the clip volume to the active view.
- Delete deletes the named fence selected in the named fence list.
- Save creates a named fence from the clip volume in the active view is created.

Clip Volume Options

User: Examples

Project: Plant

File: ...\Designs\BSI700-R0100-RRTrack.dgn
Clip Volume

By Element

Section Clip Tools

Apply Clip By 2 Points

Apply Clip Volume By Polygon
Section Clip Tools

There are four methods for creating a clip volume by section plane.

- Place Fitted Section (three methods). A Fitted Section is a section cut throughout the XY, YZ or XZ plane relative to the Auxiliary Coordinate System.

- Apply Clip By Section Plane located in the Create Clip Volume tool settings.

Here is the Top View and Isometric View of the train engine and tanker.

User: Examples

Project: Plant

File: ...\Designs\BSI700-R0100-RRTrack.dgn
In this example, a Place Fitted Section is used and an XY plane is created in the Isometric view. The Clip Element is displayed in both views with editing handles active.
Here are the results after moving the Clip Element Handles in the XY direction.

The Top view shows the Clip Element but the Clip Volume is displayed in the view selected when creating the Clip Volume, which was the Isometric view. Here is the Clip Volume after Selecting the Show or Hide Clip Element tool.

Clip Volumes and View Attributes

The View Attributes dialog includes Clip Volume Settings. When a view contains a Clip Volume, the View Attributes dialog will display a Clip Volume collapsible section. The settings on this section provide various ways to display the Clip Volumes.

In this view, the Clip Volume Settings of the View Attributes Settings are set to display the Forward volume of the Clip Element with the From View option enabled. The Back, Cut and Outside options are disabled.
Here is the same view with different options selected from the Clip Volume Settings.

Clip Volume Settings and Display Style

When a Display Style is created or an existing style is modified, enabling the Clip Volume box in the Display Style window will place the style as an additional...
option in the Clip Volume Settings. Clicking on the magnifying glass will open the Display Styles dialog.

Applying a clip volume

You can use a clip volume to isolate a part of the model so that you can work on it without the confusion from the display of other parts of the model.

➔ Exercise: Applying a clip volume by 2 points.

1. Set the following in the File Open dialog:

 Project: Plant

2. Open BSI700-A0101-PumpHouse.dgn.

3. From the View Control or the Clip Volume toolbox, select Clip Volume (4 + P) with the following tool settings:

 Apply Clip Volume By 2 Points

 Display Clip Element: Enabled
Create Dynamic View: Disabled

4 In the View Rotation toolbox, select Top View.

Note: This View Rotation was transparent (you stay in the Clip Volume command) as it knew which view to apply the command to.

5 Enter data points to create a Clip Element.

6 Enter a data point in the View, to accept the clip volume.

7 From the View Control or the Clip Volume toolbox, select Clip Volume and Show or Hide Active Clip Element, then select view. The clip element will disappear.

8 Use Shift + middle mouse button (press in), or select Rotate View to rotate the View.
Note that only the elements in the clip volume are visible during the rotation.

9 In the View Rotation toolbox, select Isometric View.

10 Fit View.

No other elements appear in the view.

11 To remove the Clip Volume select the Clear Clip Volume tool and enter a data point in the view.

Exercise: Applying a clip volume by Section Clip Tools.

1 Set the following in the File Open dialog:

 Project: Plant

2 Open BSI700-A0101-PumpHouse.dgn.

3 From the View Control or the Clip Volume toolbox, select Clip Volume (4 + P) with the following tool settings:

 Section Clip Tools

 Apply Fitted Section XY-plane

 Display Clip Element: Enabled
4 In the View Rotation toolbox, select Top View.
5 Enter 2 data points from top to bottom, to create a section through the Pump House.

6 In the View Rotation toolbox, select Isometric View.
7 Open the View Attributes dialog using the View Control tool or by pressing Ctrl+B.

Note: Since a clip volume exists in View 2, there is a Clip Volume Settings tab. The forward and back view style of the section plane are displayed on the Clip Volume Settings tab, and are set to “From View”.

8 Select the “Outside” option for the Back area of the section plane and the view displays dashed lines to indicate the Back of the section plane is now hidden.

9 Enable the display of the Cut area. The “From View” will display by default.
10 Change the display option of the Forward area of section plane to Outside. The new display of the clip volume section should look like the following view.

![Diagram](image)

11 Use the Element Selection tool (1) and select the section clip element.

12 The boundaries of the interactive clip element display.
13 Move the green handle to re-position the section plane and move the blue handle to modify the size of the Forward area of the section plane. Clear the clip element selection by a data point in the view.

Note: You can right-click on the green arrow and Flip Direction, Clip All Sides or Unclip All Sides or right-click on a blue arrow and can Toggle Clipping, Clip All Sides or Unclip All Sides. Toggle Clipping will change the blue arrow to a blue bolt.

14 Modify the Clip Volume Settings:
To remove the Clip Volume select the Clear Clip Volume tool and enter a data point in the view.

Manipulating a clip volume from a second view

With a clip volume active, you can restrict the display of elements to just those that you want to see. Once a clip element has been created, you can manipulate it to change the clip volume and the information being displayed. If you later move, or modify a clipping element, the clip volume is also moved or modified. If you delete a clipping element, the view clipping is removed. Clipping elements can be manipulated or modified with the standard MicroStation tools.

Once a clip volume has been applied to a view, you can switch the clipping on and off in the View Attributes dialog using the Clip Volume check box. You can toggle display of the clip element using the Show or Hide Clip Volume Element icon in the tool settings.

Exercise: Manipulating a clip volume

2. Open and Tile Views 1 and 2, set View 1 to Front and set View 2 to Isometric then Fit View in each window.
3. From the Clip Volume tool settings, select:

 - Section Clip Tools
 - Apply Fitted Section XY-Plane
4 Enter a data point in view 2.

5 Select Move Element (3 + 2).

6 In View 1, snap to the clip element and move it in the -Z direction.

View 2 displays the new Clip Volume. Experiment with the blue handles to make more changes to the Clip Volume. Here is an example:

7 To remove the Clip Volume select the Clear Clip Volume tool and enter a data point in the view.

Saving clip volumes

You can save clip volumes as named fences in the current file, for later use. You then can apply them to any view. You can also create a Dynamic View, more on that later.

→ Exercise: Save the clip volume
1. Continuing in BSI700-A0101-PumpHouse.dgn, make View 2 the active view.

2. Ensure that the View Attributes > Presentation > Clip Volume attribute is enabled in all views.

3. Create a 2 point Clip Element in View 1 and apply the Clip Volume in View 2. The image should be similar to the following.

4. Select Clip Volume (4 + P) and click the Expand arrow at lower right of tool settings.

5. Click Create Named Fence From Clip Volume.

6. In the Name field, type the name Front Wall and press Enter.
You now can apply this clip volume to any view.

Working with multiple clip volumes

Each view in a model can have a clip volume assigned to it. These can be identical, or they can be different clip volumes.

⇒ **Exercise: Create a second clip volume**

1. Continuing in BSI700-A0101-PumpHouse.dgn, select Clip Volume (4 + P) with the following tool settings:
 - *Apply Clip Volume By 2 Points*
 - *Display Clip Element: Enabled*
 - *Create Dynamic Views: Disabled*

2. In View 1, enter data points to isolate the back wall.

3. Enter a data point in View 3.

4. Fit View 3.
Views 2 and 3 now have different clip volumes applied to them.

5 Save the clip volume as a named fence named Back Wall.

➤ Exercise: Apply saved clip volume to a view

1 Continuing in BSI700-A0101-PumpHouse.dgn, make View 4 the active view.

2 Select Clip Volume (4 + P) and select the named fence Front Wall in the tool settings.

3 Click Apply Clip Volume By Named Fence.
The view updates to display only the pump house front wall.

4 Select the named fence Back Wall in the tool settings.
5 Click Apply Clip Volume By Named Fence.

The view updates to display only the back wall.

6 You can now rotate or control other aspects of the displayed clip volume.

Saving clip volumes in this manner lets you quickly set up views to work on specific parts of a design. Once a clip volume is defined for a view, it remains with that view until you clear it. Tools such as the Fit View tool will not change the extents of a clip volume.

➔ **Exercise: Clear a clip volume**

1 Continuing in BSI700-A0101-PumpHouse.dgn, click Clear Clip Volume in the tool settings.
2 Enter a data point in View 2.
3 Fit View 2.
The entire model is displayed again.

Using a clip mask

A clip mask has the opposite effect to that of the clip volume. A clip volume defines what to display, but a clip mask defines what not to display. Procedures for creating and using clip masks are identical to those for clip volumes. You can apply clip masks to views that have had a clip volume applied.

Similarly, you may want to work on part of a model, while hiding another part of it.

If the elements all are on the same level, you can use the Clip Mask tool to mask the elements that are not required.

Using 3D Clip Masks you can easily create cut-away drawings.
Exercise: Apply and clear a clip mask

1. Continuing in BSI700-A0101-PumpHouse.dgn, make View 2 the active view.

2. Select Clip Mask (4 + A) from the view control toolbox.
 The tool settings are similar to the Clip Volume tool. The named fences you created previously can be used with clip masks too.

3. Select the named fence Back Wall in the tool settings.

4. Click Apply Clip Mask By Named Fence.
 The view updates and the back of the pump house is masked from the view. Fitting and rotating the view will not cause it to reappear. Though you can Fit and Rotate the clip masked view.

Clearing a clip mask is the same as a clip volume.

5. Click Clear Clip Mask in the tool settings.

6. Enter a data point in View 2.

7. Select File > Close.
Display Styles Dialog

The Display Styles Dialog is for modifying and creating custom display styles or render modes. Display Styles can come from a DGNLIB or can be stored in the active DGN. Like similar Styles dialogs (Text, Dimensions, etc.) you can Update from Library to make sure you are using the latest styles.

You can access the Display Styles Dialog from the following locations:

- Settings > Display Styles... or Tools > View > View Control

- Select from the View Toolbox the Open Display Style Dialog icon.

Note: Standard display styles are provided with MicroStation V8i, and cannot be deleted.
Understanding Display Style dialog tools.

1. Wireframe - Tool settings:

 No settings

2. Hidden Line - Tool settings:

 Display: Hidden Line

3. Filled Hidden Line - Tool settings:

 Display: Filled Hidden Line

4. Smooth - Tool settings:

 Display: Shaded
5 Illustration - Tool settings:

Display: Shaded

Display Visible Edges: Enabled (Black)

Background Color: Enabled (White)

Note: The Display Styles Dialog setting “Usages” when enabled, determines if the display mode is created in view window or Clip Volume or both.

➡ Exercise: Create a custom display style

1 Open BSI700-S0501-UnloadingPlatform.dgn, make View 2 the active view.

2 Select Settings > Display Styles...

3 Select New and type over Untitled with the name “Custom Display”.

4 Set the Display Styles settings as follows:

Display: Shaded

Display Shadows: Enabled

Enable No Material: Select the Material option

Select magnifying glass: Select Platform Frame material

Enable Background color: Select Gray #48 option

Enable Usages: View
5 In View 2, select the View Display Mode tool drop down arrow and select Custom Display.

Perspective

Every time you turn on perspective in a view, you turn on the Camera (View Attributes > Camera). You can turn perspective on specifically using the View Perspective tool.

A single data point in the view center starts the 3 point perspective, and movement away from the center changes the amount of perspective. Selecting the View Perspective tool and double clicking in the center of the view sets the view to parallel projection, or turn off the Camera in View Attributes.

Additional options are available if you click and hold the View Perspective tool or open it as a toolbox. Right-click on any tool to Show All tools.

- View Perspective interactively set perspective in a view
- Wide Angle sets perspective in a view to match an extra wide angle camera lens
- Normal sets perspective in a view to match a normal camera lens
- Telephoto sets perspective in a view to match a telephoto camera lens
- Two Point Projection sets perspective in a view to 2 point projection. Hidden by default
• Camera Off turns off a view camera and return to parallel projection

Saved Views dialog

Used to name, save, delete, import, apply and recall saved views. Saving a 3D view allows you to quickly recall a view with specific attributes. It is important to create and use Saved Views in 3D, since you will want to return to a known position many times. They are helpful for design, navigation, rendering and animation. Camera and Clip Volume settings are available for saving or recall.

Open the dialog by selecting Utilities > Saved Views, selecting View Save/Recall from a view window control menu, or pressing F6.

Understanding the Saved Views dialog

The Saved Views dialog contains controls that are used to apply a saved view to a view in the design file. The list box shows the name, description and model of each view saved. To apply a saved view, use the following options:

Apply to Selected Views. Select this tool and click in a selected view window.
Apply to open views. All opened views will display the Saved View.

Double click the entry in the Saved View dialog list will display the Saved View in the Active View.

Active File

This icon displays optional settings by clicking on the drop-down list box.

Note: A link is a pointer to project data and a link set is created when you use Project Explorer *(File > Project Explorer)*.

Create Saved View

Opens the Create Saved View dialog where you name and describe the view you are saving. The view can be a saved, section, elevation, detail or plan view. A Clip Volume can also be added to a Saved View Option or a Dynamic View can be created.

Exercise: Create a Saved View

1. Open BSI700-50501-UnloadingPlatform.dgn, open Views 1 through 4, select to *Window > Tile*, and then Fit View (4 + 5) for each view.

2. Set Display Mode to Wireframe for each view.
3 Window in on the top of the Unloading Platform in View 4 (Right View).

4 Set Display Mode to Smooth with Shadows and apply the View Perspective Extra Wide Angle. Pan and Rotate to adjust if needed.

5 Press F6 to open the Saved View dialog, click Create Saved View, and save the new view in View 4:

 Name: Top Platform

 Description: Top platform with wide angle view

6 Click in View 4 to select the source view.
7 In the Saved Views dialog, set the View number to View 3 and double click the Top Platform saved view in the saved view list box.

8 In the Saved View dialog list box, click on the area below the header “Clip Volume” to select an existing clip volume.
AccuDraw in 3D

Module Overview

AccuDraw is an intelligent drawing aid that interprets the position of the pointer relative to previous data points, view orientation, and coordinate system. Using AccuDraw, you can quickly enter additional data points that build on those entered previously.

Module Prerequisites

- Knowledge of AccuDraw in 2D
- Knowledge of basic 3D view controls and 3D planes

Module Objectives

After completing this module, you will be able to:

- Design with AccuDraw in a 3D environment
- Use Auxiliary Coordinate Systems to control drafting planes
- Use AccuDraw 3D shortcuts
Introductory Knowledge

Before you begin this module, let's define what you already know.

Questions

1. Name the two basic AccuDraw interface components.
2. What must have the focus for AccuDraw shortcuts to work?
3. What are the operational steps when using AccuDraw?
4. How do you place the AccuDraw compass at a snap point?

Answers

1. AccuDraw compass and AccuDraw window.
2. The AccuDraw window.
3. 1. Enter a data point using either precision input, or a data point, to fix the location of the compass.
 2. Move the pointer in the direction in which you wish to draw.
 3. Without using the pointer to put focus into the AccuDraw window’s key-in fields, enter the desired distance value.
4. Use AccuSnap, or issue a manual tentative snap, and use the AccuDraw shortcut <O>.
The AccuDraw Drawing Plane

AccuDraw was designed to work with the 3D drawing environment. You can work in a view other than one of the orthogonal views (Top, Front, and Right), but still draw in the orthogonal planes.

Rotated views such as Isometric or Right Isometric display a design more clearly. When working in these views, if you want to draw an object on the Top or Front plane, you can simply rotate the AccuDraw compass to that plane using an AccuDraw shortcut. You do this by rotating AccuDraw’s compass to an orthogonal plane with one of the shortcuts V (view), T (top), F (front), or S (side).

![AccuDraw Compass Diagram]

Working in the Isometric view, you can use AccuDraw shortcuts to rotate its compass to the Top (T), Front (F), Side (S) or View (V) orientation

Note: Remember that the focus must be in the AccuDraw window for its shortcuts to work. Press F11, or press Esc and then the space bar to move focus to it.

It is recommended that you work in the Isometric view with the Top, Front and Right views open, placed behind the Isometric view.

3D Element Placement

Placing elements in a 2D file is like drawing on a sheet of paper. All elements are on 1 plane, the x,y plane. When you place the same elements in a 3D file, by
default they are placed in the AccuDraw drawing plane. The AccuDraw drawing plane can be rotated to match the view being used, or defined to be a particular rotation.

In the following exercises, you will draw an open rectangular box using 2D blocks.

Exercise: Open the model and draw the base surface

1. Set the following in the File Open dialog:
 - **User:** untitled
 - **Project:** Everything3D

2. Open AccuDraw_3D.dgn from the class data set.
 - This model displays the ACS triad, which indicates the directions of the 3 axes, in each view. You can toggle the display of the ACS triad in the View Attributes dialog.

3. Select **Workspace > Preferences**, and then the Task Navigation category and set Presentation to Dialog.

4. In the Task dialog, click on the Solids Modeling task.

First, using the Top view, you will draw the base of the box. You will use AccuDraw to input precise dimensions. Effectively, this part of the exercise will be no different from working in 2D.

5. Select Place Block (W + 1).
6 Enter a data point in the lower left corner of the Top view.

7 Move the pointer to the right and, with it indexed to AccuDraw’s x-axis, type 1.5.
 Do NOT enter a data point.

8 Move the pointer upward and type 1.25.

9 Enter a data point to complete the block.

10 Fit each view.

The block appears as a line in both the Front and Right views, where it is edge on to the views, like looking at a sheet of paper edge on.

Next, you will use the Isometric view to draw the corresponding front and right faces of the box. You may remember that each view has an active depth, where data points fall by default if you do not snap to an element. Here, you will snap to the existing block that you just drew and use AccuDraw to keep the pointer at that depth in the view.

➔ Exercise: Use Isometric views to draw corresponding faces for the box

1 Continuing in AccuDraw_3D.dgn, select Place Block (W + 1).

2 In the Isometric view, snap to the left end of the existing block and accept with a data point.

3 With focus on AccuDraw, press <F> for the Front rotation.
4 Move the pointer to the right, snap to the endpoint and, with it indexed to AccuDraw’s x-axis, then press <X>, to lock to the x.

5 Move the pointer upward, type 0.5, and enter a data point to complete the block.

6 Fit each view.
 For the right face, you can snap to existing elements to place the points.

7 Select Place Block (W + 1).

8 Press <S> for Side rotation.

Note: Press F11 to put focus in the AccuDraw window.

9 In the Isometric view, snap to the bottom left end of the base and accept with a data point.
10 Continuing in the Isometric view, snap to the top of the front surface and accept with a data point.

As you do this, check in the Front and Right views to ensure that you are snapping to the correct points and that the block is being placed correctly.

11 Fit each view.

To complete the box, you can use the Copy tool to copy the existing faces creating the opposite sides. When you copy an element in 3D, it retains its current orientation. That means that a vertical face remains vertical, a horizontal face remains horizontal, and so on.

➔ Exercise: Copy the existing faces to complete the box

1 Continuing in AccuDraw_3D.dgn, select Copy Element (3 + 1), with the following tool setting:

Copies: 1
2 In the Isometric view, identify the block representing the back face at its lower right vertex.

The face is attached to the pointer. As you move the pointer in the other views, the front face element retains its current orientation.

3 Snap to the front right vertex of the base block.

4 Enter a data point to complete the copy and reset.
5 In the Isometric view, identify the block representing the right face at its lower right vertex.

6 In the Isometric view, snap to the back right vertex of the base block and accept to complete the copy.

7 Reset.

8 Click the View Display Mode view control and change the Isometric view’s display to Hidden Line.

9 Use the Rotate View tool to rotate the Isometric view and verify that you have correctly drawn all the surfaces for the open top box.
As you can see, placing elements in 3D is no more difficult than in 2D. In the exercise, you used MicroStation’s views to correctly orient the elements. Of the 4 views, the Isometric view best displays the model. You can see the 3 faces quite clearly.

Using AccuDraw’s rotated drawing plane

You can place elements in the Top, Front and Side alignments using AccuDraw’s <T>, <F> and <S> shortcuts.

AccuDraw’s drawing plane lets you work in any view, while still maintaining the correct plane for the elements being drawn. You can still snap to elements that are not on the current drawing plane and AccuDraw responds accordingly.

As you draw in 3D, you may observe the drawing plane axes change as you enter data points. The alignment of the drawing plane depends on the tool being used and the location of the previous data points. For 3D models, the 3 previous data points are considered, as this is the minimum requirement to describe a planar surface. Where less than 3 data points have been entered, the view orientation is also considered.

Additional shortcuts

- Base Rotation: Rotates the drawing plane to align with the active ACS or the rotation of the view.
- <E> Cycle Rotation: Rotates between 3 main planes; top, front, and side. Pressing E rotates the drawing plane first 90° about its x-axis, then 90° about its y-axis, and then back to its original rotation.

In the following exercises, you will work in the Isometric view and let AccuDraw correctly align the elements. As you work through the exercise, use the other open views to check the orientation of the element being drawn, by maximizing and shrinking the Isometric view.

Exercise: Automatic drawing plane rotation in AccuDraw

1. Continuing in AccuDraw_3D.dgn, Pan to an open area of the model.
2. Select Place Block (W + 1).
3. In the Isometric view, place 2 orthogonal blocks as shown.

4. Continuing with Place Block, snap to the vertical face upper right corner.

5. Press <T> to rotate AccuDraw’s drawing plane to Top.
6 Snap to the lower right vertex of the base.

AccuDraw uses the 2 data points plus the view to set the drawing plane orientation. This results in a drawing plane that is not always in alignment with any of the standard Top, Front or Side drawing planes.

7 Snap to the lower left edge of the base and accept with a data point.

AccuDraw’s drawing plane now aligns itself with the plane of the 2 non-planar data points.

8 Reset to complete.

Non-orthogonal rotation

Quite often, you will need to rotate the AccuDraw compass to a non-orthogonal plane; one that is not the Top, Front or Side. Besides the standard non-planar data
points and view rotation, or non-planar snapping, several other methods are available. The most common is to use an AccuDraw shortcut.

- **RQ** - Rotate Quick provides quick, non-persistent rotation
- **RA** - Rotate ACS allows you to persistently rotate x and y plane about an origin point. You can clear it by using a standard rotation like T, F, S, V
- **WA** - Save an ACS rotation
- **GA** - Recall an ACS rotation
- **E** - Cycle Rotation
 Important when using another ACS since T, F or S will break you out of existing ACS
- **RX** - Rotate about x-axis
- **RY** - Rotate about y-axis
- **RZ** - Rotate about z-axis
- **RE** - Rotate AccuDraw compass to match orientation of an element
- **RV** - Rotate Active View to orientation of AccuDraw compass

Exercise: AccuDraw and Quick Rotation

1. Continuing in AccuDraw_3D.dgn, select Edit > Undo to undo the placement of the last inclined plane.
2. Select Place Block (W + 1).
3. Press F11 and then press <T> for top rotation.
4. Following the status bar prompt, snap to the upper left vertex of the vertical face and accept with a data point.
5 Press <RQ> and, following the status bar prompt, snap to the lower left vertex of the base, then accept the new rotation with a data point.

6 Snap to the right lower vertex of the base and accept the new block with a data point.

Note: An alternate method is to use Place Block with the Method set to Rotated.

To keep a persistent rotation, you can use the AccuDraw shortcut <RA>.

→ **Exercise: Using RA to keep a rotation**
1. Continuing in AccuDraw_3D.dgn, select Place Circle (W + 5) with the following tool setting:

 Method: Center

2. Snap to the upper left vertex of the vertical face, press F11, and then press <O> to set the AccuDraw origin, but do not enter a data point.

3. Press <RA>, keeping the snap point the same, and enter a data point to accept the origin.

4. Snap to, and accept, the upper right vertex of the vertical face to show the x-axis direction.
5 Snap to, and accept, the lower left of the base to set the y-axis direction.

6 Press the space bar to change to the rectangular coordinate system.
7 Snap to, **but do not accept**, the left midpoint of the inclined plane and lock the y-axis by pressing <Y>.

8 Press <K> to open Keypoint Divisor dialog and set the divisor to 3.

9 Snap to left third of the long edge of the base to set the x-axis distance, and enter a data point to accept the center point of the circle.
10 Type a distance of 0.2 for the radius and accept with a data point.

Save the rotated ACS with AccuDraw shortcut <WA> and recall it with <GA>.

A quick rotation method is to rotate to an elements plane.

Exercise: Quick Rotation to an element

1 Continuing in AccuDraw_3D.dgn, with focus on AccuDraw, press <T> to set Top rotation.

2 Select Place Circle (W + 5), with the following tool settings:
 Method: Center

3 Press F11 to put focus in the AccuDraw window.

4 Snap to, but do not accept, the midpoint of right edge of the inclined plane and press <O> to set the AccuDraw origin at the midpoint.

5 Press <RE> to Rotate to Element.
6 Align the compass to the right inclined edge.

7 Enter a data point to accept the rotation.
8 Index to the left and press Enter.
9 Snap to a point one-third of the way along the bottom edge and enter a data point to place the center of circle.
10 Index to any axis and type a radius of 0.2.

Other tools that rely on the plane orientation also can be used with AccuDraw. For example, the Mirror, Rotate Element, and Array tools all use the plane orientation to define the direction of the mirror, or the axis of rotation.

Locating elements relative to others

There will be occasions when you will locate elements relative to others already present in the model.

In the following exercise, you will place a SmartLine to represent a center line for a pipe.

Exercise: Draw the center line

2. Open the 01_AccuDraw Exercise model.
3. Set the View Display Mode to Smooth with the following tool settings:

 Display Edges: Enabled
 Display Hidden Edges: Enabled

5. Select Place SmartLine \((Q + 1)\) with following settings:

 Segment Type: Lines
 Vertex Type: Rounded
Rounding Radius: 1.5

Join Elements: Enabled

6 In the rotated view, snap to the vertex at the point labeled Start here and accept with a data point.

7 Press <T> to switch to the Top plane.

8 Move the pointer down to the left and, with it indexed to the y-axis, press <Enter> to constrain the point to this axis. (Do not enter a data point.)
9 Type a distance of 35 for Y, and accept with a data point.

10 Staying in the Top plane, index to negative Y and press Enter.
11 Snap to the center of lower, open cylinder face and accept with a data point.
As you snap to the vertex, AccuDraw displays a dashed line, which is perpendicular to the x-axis, back to the point being placed. This lets you locate the y distance using a 3D snap.

12 Press <F> for Front rotation.

13 Index to the negative y-axis and press <Enter> to constrain the next point to the y-axis.

14 With the pointer still snapped to the lower center open cylinder face, accept with a data point.

15 Press <T> for Top rotation.

16 Index to the negative y-axis and lock by pressing <Y>.
17 Type 30 and accept with a data point.

18 Reset to complete.

19 Rotate to see the other side.

20 Repeat for the other 2 directions.

21 Select File > Close.
Using Auxiliary Coordinate Tools

You can define new x- and y- axes in your design plane and save them as an auxiliary coordinate system (ACS). You can define several auxiliary coordinate systems and quickly choose any of them to use. At any time, you can make one ACS active per view.

Auxiliary coordinate systems can be particularly helpful in 3D design, where they facilitate placing elements on planes at different depths and orientations. By using an ACS that corresponds to the location and orientation of a particular element, you can enter data points relative to that element rather than the global origin.

Once an ACS is active you can use it with AccuDraw and with precision input key-ins (such as AX= and AD=) to perform precision input with respect to the auxiliary coordinate systems.

You can also use AccuDraw shortcut key-ins to define and activate auxiliary coordinate systems.

MicroStation provides specific tools for creating, modifying, importing and selecting Auxiliary Coordinate Systems. You can find the tools by selecting Utilities > Auxiliary Coordinates or right click and turn on the tool in the Primary Tools toolbox.

An auxiliary coordinate system (ACS) is a coordinate system with an orientation, and/or an new origin, different from those of the DGN file coordinates (the Global Origin). Although not exclusively a 3D concept, an ACS is most useful in 3D modeling as a drawing aid.

![Auxiliary Coordinates](image)

Tools from left to right are:

- Create a new ACS
Using Auxiliary Coordinate Tools

- Copy ACS
- Delete ACS
- Import ACS
- Define ACS (Aligned with Element)
- Define ACS (By Points)
- Define ACS (Aligned with View)
- Define ACS (Aligned with Reference)
- Rotate ACS
- Move ACS
- Apply ACS to Selected View
- Select ACS

Active Depth is no longer used, because the location of unsnapped points is controlled by the ACS for a view. Instead of Depth Lock, you now can enable ACS Plane Snap to force unsnapped points to fall on the plane of the ACS.

Auxiliary Coordinates dialog tool features

- A new ACS can be created using the Create a new ACS tool in the dialog.
- You do NOT need to create an ACS before you define it. Using a Define ACS tool will create an ACS for you.
- A list box now displays the active ACS on the top line and all ACS’s in the active model.
- All ACS tools are available within the dialog.
- Ability to create, copy, delete or import an ACS.
- Make an ACS active by double clicking on ACS name in list or right-click on ACS name and select Set Active from options list.
- Other options include ability to match the coordinate system of selected ACS to the active ACS or global coordinates for the model, and deleting or renaming an ACS.
- Left click on the Type and change it to None, Rectangular, Spherical, or Cylindrical.
Important Notes on the ACS System

The active ACS for a view is NEVER a named ACS, it is a copy. You can set it from a named ACS and as long it still matches the named ACS it will display the name to show where it originated from.

For example, set a named ACS for a view, then change it, by using the AccuDraw shortcuts RA, E, Define ACS by Points tool, etc. Only the active ACS for the view is changed and the connection with the named ACS is broken (the view becomes unnamed). Otherwise, you would have to be very careful not to inadvertently re-define your carefully setup named ACS.

The reverse is also true. Set a named ACS on the view, then modify the named ACS directly (for example, enter new origin values for a named ACS using the ACS dialog). The active ACS values are un-affectted and just the connection with the named ACS is broken. In both cases you will see that the active ACS loses its name immediately in the ACS dialog.

The View Independent toggle (right click on a named ACS in the ACS dialog to select command) is a little different. It is currently only a property of the active ACS, not a named ACS. As long as the other settings are the same you can toggle it on/off without breaking the connection to the named ACS, but if it is left view independent MicroStation will stop showing the name when you re-open the file because the active ACS would have been saved without a fixed rotation. With a view independent ACS the xy-plane is always aligned parallel to the view at the defined depth or the equivalent to active depth in V8i.

So the main thing to understand is that a view's ACS is completely independent of any named ACS, the name is just a helpful hint as to how it was setup that is only valid as long as nothing is changed.

ACS and Depth Lock

MicroStation V8i no longer has a Depth Lock. It is replaced by the ACS Plane Lock. The ACS always defines your working plane now, it is not going to be some static thing that you just leave at 0,0,0 with an identity rotation and never use.

To mimic depth lock you can setup a view independent ACS, which is the default for files that did not have ACS Plane Lock enabled and what the set active depth tool now does. Then turn on ACS Plane Snap from Settings > Locks > ACS Plane and ACS Plane Snap or use AccuDraw shortcuts LP, LA and/or LS (see below).
ACS and Depth Lock Questions and Answers

1. Do I need to set up view oriented ACS for each rotated view?

 You certainly can, you could have an ACS for your elevation view that is always front and your plan view that is always top, etc. However, if you typically work with a single view and frequently switch between standard rotations to draw on different planes aligned to the view, changing the ACS would get tedious. A view's ACS can now specify that it is view independent, in other words, defines a point that a plane aligned with the view passes through, effectively the active depth concept but without having to worry about viewing operations inadvertently changing it out from under you. If you have display of the ACS enabled for a view, a view independent ACS displays the triad arrows with a dotted style instead of solid.

2. How does this affect the coordinate readout in the Status Bar.

 First, use Running Coordinates (right click on the Status Bar and select). Then by left clicking on the Running Coordinates box in the Status Bar you can choose to display: Position, Delta, View Delta, Distance, ACS Position, or ACS Delta.

3. I do heavily rely on view active depth, for rotating views. I would have thought that when no ACS is enabled then the active depth and depth lock should work as before.

 The ACS is effectively always enabled. ACS Plane Lock now just controls whether viewing operations and AccuDraw shortcuts for T, F, S are relative to the design coordinates or the ACS. It also controls whether the ACS scale will be used (in the case where you have explicitly set a scale other than 1.0 for your ACS).

4. We use SET TPMODE LOCATE how does this affect us?

 It should not affect you. To always report coordinates relative to the global origin, use tpmode locate. If you do not want the snap point projected to the active ACS Plane (i.e. active depth) turn off ACS Plane Snap just as you would have had to turn off Depth Lock in previous versions. Use TMODE ACSLOCATE only if you set a specific ACS for you view, and the expectation here is that these users will use the ACS tools and ACS dialog and not use the old active depth tools. You can also change your mode with Running Coordinates.

5. Do I need to use ACS Plane Lock and ACS Plane Snap Lock always in my workflow now?
The ACS locks is for someone who has setup an explicit ACS to a meaningful location/orientation. ACS Plane Lock is not needed to control whether un-snapped points are projected to the ACS Plane, that always happens now.

6 How do I save my ACS’s?

ACS’s are saved with Save Settings.

Set Active Depth Tool

The Set Active Depth tool was left in the interface because it is a familiar and easy to use tool for people that were not accustomed to using an ACS. The implementation of the tool has changed to define a view independent ACS at the point you select. Turn the View Attribute for ACS on so you can see what it is doing.

AccuDraw Shortcuts for ACS

Although using ACS’s may seem complicated, AccuDraw uses them as a basic part of its 3D functionality, permanently storing arbitrary rotations. It is not necessary to learn much about ACS’s to use them effectively with AccuDraw.

AccuDraw drawing plane shortcuts for Top, Front and Side are relative to the active ACS rather than the Default coordinate system.

- LP - Lock ACS Grid Plane - Toggles ACS Grid Plane lock, which toggles the ACS Plane and ACS Plane Snap locks, and the Grid view attribute for all views. Very helpful shortcut. The F8 key is mapped to the same command.
- LA - Toggles ACS Plane lock.
- LS - Toggles ACS Plane Snap lock.
- LZ - Toggles Sticky Z Lock, which can be used in conjunction with ACS Plane Snap Lock to force a series of snap points to lie on the active ACS’ XY plane (Z=0).

One possible AccuDraw and ACS Workflow

1 Draw/Reference an element for the rotation you need.
2 Use AccuDraw shortcut <RE> for Rotate [compass to] Element, and AccuDraw will rotate to the orientation of this element.
3 Use AccuDraw shortcut <WA> for Write ACS, and a new ACS will be created with the name you choose.
4 Use AccuDraw shortcut <GA> for Get ACS, this gives you a menu to select your ACS’s.

When opening the ACS dialog you will see your ACS Systems, right click on the title-list of this menu, and you can turn on and view the rotation of your ACS.

⇒ Exercise: Creating and drawing on a new ACS.
1 Continuing in AccuDraw_3D.dgn, open the model 02_ACS_by_points.
2 Select the ACS By Points tool from the Auxiliary Coordinates dialog with the following tool settings:
 Type: Rectangular
3 Enter the new ACS origin at point 1
4 Define the x-axis by placing a data point on point 2
5 Enter a data point on point 3 to identify the y-axis direction, and the new ACS will display.

6 To create a new ACS, click the Create a new ACS tool in the dialog and type a name for the new ACS.

7 Double click the new named ACS.
It will become the Active ACS and will display on the first line or Active ACS line of the dialog.

8 Select Place Block with the following settings:

 Method: Rotated
 Area: Solid
 Fill Type: None

Note: When drawing on a rotated ACS use the AccuDraw shortcut <LA> to lock the ACS Plane.

9 Enter the base point of the block at the midpoint of the edge between points 1 and 3.

10 Enter the second base point of the block at the midpoint of the edge between points 1 and 2.

 AccuDraw will automatically rotate orthogonal to ACS2.

11 Move the pointer along the green y-axis for a distance of 1.

12 Render using the Smooth or Hidden Line View Display Mode.
Define an ACS aligned with a reference file

The following image shows a simple reference attached to the model.

To set the ACS so that it is aligned with the ACS of the Reference, use the Define ACS (Aligned with Reference) tool. Select the Reference and the Reference ACS becomes the active ACS.

ACS interaction with AccuDraw

Use the AccuDraw shortcut <LA> to lock the active ACS plane. This will let you use the <T>, <F> and <S> shortcuts relative to the active ACS.
Use the AccuDraw shortcut <LP> or default function key <F8> to turn on the ACS Plane, ACS Plane Snap and grid for all views. The following image shows the results of using the <LP> or <F8> shortcut.

Separate ACS per View

A new tool in the ACS toolbox lets you assign Auxiliary Coordinate Systems to each view. You can create an ACS for a view with the Define ACS by View tool. You can make the ACS view-independent by turning on a check box. When a view-independent ACS is active, and the ACS triad setting is enabled for the view, the X, Y arrows are displayed as dashed in the view.

To retain the per-view ACS setting for the next session, you must select File > Save Settings.

When a model created in an earlier version is opened and the ACS Plane lock is not enabled, a view-independent ACS with an origin of the view center at active depth is created. This lets you start working with the geometry created in the same place as it would have been in the earlier version (at the Active Depth).

You may also right-click on an ACS in the ACS dialog and select Set Active View.

Projecting Points from and ACS to a Plane

You can use a combination of an ACS and AccuDraw to project points, in the ACS z-direction, from the ACS plane to the AccuDraw drawing plane. This technique lets you, for example, trace the boundary of a house on to a sloping roof line, as explained in the following workflow.
Module Review

How to Project Points onto a Rotated Plane:

1. Set up an ACS such that the Z direction is the desired projection.
2. Press F8 or <LP> to lock AccuDraw to the ACS Plane, Plane Snap and Grid Plane or use <LA> and <LS> if you do not want to see the grid.
3. Select the element placement tool, such as Place SmartLine.
4. Press F11, to set focus to AccuDraw.
5. Key-in the AccuDraw shortcut RE.
6. In the tool settings, set:
 Update Current ACS: Off
 Move Origin: On
7. Select the element to which you want AccuDraw aligned and accept with a data point.
8. To commence drawing the element, snap to an element in the ACS plane and accept with a data point.

The point is projected onto the AccuDraw drawing plane.
9. Add more points by snapping to elements in the ACS plane to project the points to the AccuDraw drawing plane.

Module Review

Now that you have completed this module, let’s measure what you have learned.

Questions

1. When you place elements in a 3D file, on what plane are they placed by default?
2. How can you move focus to the AccuDraw window?
3. Which view rotation best displays a model?
4. True or False: When you copy an element in 3D, it retains its current orientation.
5. What is the minimum requirement to describe a planar surface?
6. What does the AccuDraw shortcut <RA> do?
Basic 3D Solids

Module Overview

This module presents tools for Curves, Solids and Surfaces. When working with Solids it helps to think like a sculptor who starts out with a mass and cuts away what is not needed. Of course, in digital 3D you can add just as easily.

Module Prerequisites

- Knowledge of 3D tools in MicroStation
- Knowledge of 2D Drawing tools in MicroStation
- Knowledge of AccuDraw in 3D

Module Objectives

After completing this module, you will be able to:

- Use new 3D modification and creation workflows
- Use existing and new 3D Primitives
- Apply new features of existing tools
Introductory Knowledge

Before you begin this module, let's define what you already know.

Questions

1. Name the AccuDraw shortcut used to cycle through rotations.
2. What 3D primitive lets you create a box-shaped object?
3. What is Feature Modeling?

Answers

1. E. This shortcut will cycle through all orthogonal rotations.
2. Place Slab.
3. Feature Modeling tools let you create parametric feature-based solids. That is, a parametric solid that is created from one or more features. Each part of a solids model created with these tools is a feature. Parameters used to create the features are stored in the design and may be edited.

3D Workflows

All 3D modeling tools now have a unified workflow that covers that way that you select items for creation and modification, and how you can modify them interactively.

For example, you can now select edges and faces of solids and surfaces for modification with Element Selection. Typically, selecting edges, faces, or vertices, for solids and surfaces is as follows:

- Generally — select single items with a data point, and use Ctrl + data button for additional items.
- Faces — select the solid/surface first, and then dynamics let you select face(s).
- Back Faces — snap to an edge or vertex of a back face.
- Edges/Vertices — direct selection, or through dynamic selection.
Interactive handles to control 3D objects during creation

Interactive handles let you control aspects of 3D objects during creation. For example, you can reverse the direction of surface normals interactively, during construction of fillets, by clicking the direction handles.

Solids Modeling Task

Contains basic Drawing tools plus 3D-specific tools for creating primitive solids, extrusions, revolutions, converting solids to surfaces and vice versa, and the Draw on Solid and Modify Solid Entity tools.

The first tool in the Solids Modeling task, Place SmartLine initially, is also a member of the Drawing task. When you press the left mouse button over the tool, you see a drop-down menu from which a tool in the Drawing task can be selected. The Drawing task can be opened as a floating toolbox by selecting Open As ToolBox from the drop-down menu.

When a tool is selected in the Drawing task, the tool automatically becomes the top icon of the child task in the Solids Modeling task.

Hint: Press F4 to see the current tasks at the pointer.
Surface Modeling tasks

These tasks contain the Drawing toolbox, plus tasks for construction, and modification of surfaces and mesh elements.
Feature Based Solids Modeling tasks

MicroStation has advanced solids modeling construction and modification tools for parametric modeling using Feature trees. These are contained in the Feature Based Solids Modeling task.
Alternate Display options exist for the Task Navigation dialog. Right click on the name of a task in the dialog itself or select an icon from the icons displayed aside of the Task name.

List option is useful when learning a new task and Panel option exposes all tools.

3D Primitive Solids

Many 3D solids can be created from 1 or more of the Primitive Solids models located in the Solids Modeling Task. The primitive models available include the Slab, Pyramid, Sphere, Cylinder, Cone, Elliptical Cone, Ellipsoid, Torus, Wedge, and Polyhedron.

3D Surface Primitives have been moved to the Surface Task.

Each tool setting has the Method, Axis and required parameters to create the specific Primitive Solids:

- **Method**: Creation by Vertex, Edge, Face, Inscribe, Circumscribed, Center, Edge, or Diameter.

- **Axis**: Lets you choose how the axis for the element is defined. You can select from Points (AccuDraw), Screen X, Y, or Z, or Drawing X, Y, or Z. Screen is direction of the height is set to the screen's X, Y, or Z axis. Drawing is direction of the height is set to the drawing's, or model's, X, Y, or Z axis
Other settings are specific for each tool.

Hint: Although the primitives’ dimensions can be specified in the tool settings, for placing a single primitive it is generally quicker to type these distances into the AccuDraw window.

Slab Solid

Probably the most useful of all primitives, the Place Slab tool can be used to draw any cubic object. Using this tool, you can construct a box shaped solid or surface. Element specific tool settings are as follows.

- **Axis:** Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
- **Orthogonal:** When enabled, the sides are perpendicular to the base.
- **Length:** If on, specifies the length.
- **Width:** If on, specifies the width.
- **Height:** If on, specifies the height.

![Slabs placed as Solid](image)

Place Sphere

With this tool, you can construct a sphere with 2 data points. Element specific tool settings are as follows.

- **Method:** Center, Edge, Diameter
- **Axis:** Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
• *Radius*: When on, specifies the Radius.

Place Cylinder

A cylinder is defined by 3 data points, the center of its radius, then the radius, and finally the height. Element specific tool settings are as follows.

- *Axis*: Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
- *Orthogonal*: If on, the centerline of the cylinder is perpendicular to the base.
- *Radius*: If on, specifies the radius.
- *Height*: If on, specifies the height.

Hint: You can use the Modify Element tool to reposition the base or top of cylinders.

Place Cone

Similar to the Place Cylinder tool, the Place Cone tool requires a fourth data point to define the Top radius of the cone. A cone with its apex cut off by a plane parallel to its base is called a truncated cone or frustum.

Element specific tool settings are as follows.

- *Axis*: Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
- *Orthogonal*: If on, the centerline of the cone is perpendicular to the base.
- *Top Radius*: If on, specifies the top radius.
- *Base Radius*: If on, specifies the base radius.
- *Height*: If on, specifies the height.
Place Torus

A torus is a round doughnut-shaped object that is defined by 4 data points; the start point, the center point, the sweep angle, and the secondary radius. The primary radius is the one the torus is swept around and is the distance between the start point and the center point. The secondary radius defines the inner radius, or the radius of the torus’ circular section.

Element specific tool settings are as follows.

- **Axis**: Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
- **Primary Radius**: If on, specifies the primary radius.
- **Secondary Radius**: If on, specifies the secondary radius.
- **Angle**: If on, specifies the sweep angle.

Place Wedge

A wedge is constructed by revolving a rectangular section about an axis. It is defined by 4 data points. The first data point defines a corner of the wedge, the second data point defines the center point of the wedge and the point to rotate about, the third data point defines the sweep angle and the fourth data point defines the height of the wedge.

Element specific tool settings are as follows.
• **Axis**: Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
• **Triangular**: Determines the shape of the wedge. If on, the outer face is flat (a chord of the swept surface). If off, the outer face is rounded.
• **Radius**: If on, specifies the radius.
• **Angle**: If on, specifies the angle.
• **Height**: If on, specifies the height.

Place Pyramid Solid

A multi-sided pyramid with equal sides or a rectangular pyramid can be created with this new primitive solid.

• **Method**: Inscribed, Circumscribes, By Edge, and Rectangle
• **Axis**: Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
• **Orthogonal**: When enabled, the sides are perpendicular to the base.
• **Edges**: You can create from 3 to 63 edges.

The image on left shows Inscribed, Circumscribed, By Edge method and image on right shows Rectangle method

➔ **Exercise: Draw a Pyramid Solid**

1. Open Basic_Solids.dgn and open the model named 01_3D Primitives.
3. Select Pyramid Solid (E + 2) with the following tool settings:

 Method: Inscribed
Axis: Points (AccuDraw)

Edges: 5

Orthogonal: Enabled

4 Enter Center Point: Click anywhere in view and set AccuDraw rotation to (T).

Define base radius: Move cursor 40 units in positive X direction.

Define height: Move cursor 80 units in positive Z direction.

Define top radius: Move cursor 20 units in positive X direction.

When Orthogonal is disabled, you can create skewed Pyramid Solids, where the sides and height are not restricted to being perpendicular to base radius.

When all settings are enabled, you merely define the direction of each dimension. This is useful when you want to place a number of Pyramid Solids with the same dimension values. If they are all identical, the Copy tool can be used after placing the first slab.

Elliptical Cone Solid

This tool is used to place an elliptical cone solid, which is a transition solid between two ellipses. The resulting solid is a SmartSolid. Tool settings are:

- **Axis:** Points (AccuDraw), Screen X, Y, Z, Drawing X, Y, Z
- **Orthogonal:** If on, the element is a right elliptical cone.
- **Base Primary Radius:** If on, sets the primary axis radius for the base.
- **Base Secondary Radius:** If on, sets the secondary axis radius for the base.
- **Height:** If on, sets the height of the elliptical cone.
- **Top Primary Radius:** If on, sets the primary axis radius for the top.
- **Top Secondary Radius:** If on, sets the secondary axis radius for the top.
Exercise: Draw a Elliptical Cone Solid using AccuDraw

1. Continuing in Basic_Solids.dgn, in the 01_3D Primitives model, with the Solids Modeling task active in the Task Navigation dialog, select Elliptical Cone Solid (E+6) with the following tool setting:

 - **Axis**: Points (AccuDraw)
 - **Orthogonal**: Enabled

2. Enter a data point anywhere in view and set AccuDraw rotation to (T). Enter the base ellipse center point.

3. Enter a primary radius (x-axis = 20) and a secondary radius (y-axis = 40) to create the elliptical base.

4. Enter (z-axis = 80) to define the height of the Elliptical Cone Solid.

 AccuDraw automatically switches to the correct AccuDraw Plane rotation in order to enter the height.

5. For the top ellipse enter a primary radius (x-axis = 40), secondary radius (y-axis = 20) and final data point to complete the solid primitive.

Ellipsoid Solid

This tool is used to place an ellipsoid, a solid defined by three radii. An ellipsoid is a type of quadric surface that is a higher dimensional analogue of an ellipse.

Exercise: Draw an Ellipsoid Primitive Solid using AccuDraw

1. Continuing in Basic_Solids.dgn, in the 01_3D Primitives model, with the Solids Modeling task active in the Task Navigation dialog, select Ellipsoid Primitive Solid (E+7) with the following tool setting:

 - **Axis**: Points (AccuDraw)
 - **Orthogonal**: Enabled
2 Enter a data point anywhere in the view and set AccuDraw rotation to (T). Enter the base ellipse primary radius (x-axis = 40).

3 Enter a secondary radius (y-axis = 20) to create the elliptical base.

4 Enter a tertiary radius (z-axis = 20) to complete the Ellipsoid primitive solid.

AccuDraw automatically switches to the correct AccuDraw Plane rotation in order to enter the tertiary radius.

![Ellipsoid primitive solid diagram]

Regular Polyhedron

A polyhedron (plural polyhedra or polyhedrons) is often defined as a geometric object with flat faces and straight edges of equal length.

Method:

- **Vertex** — Radius is measured from the center of the polyhedron to each vertex.
- **Edge** — Radius is measured from the center of the polyhedron to the midpoint of each edge.
- **Face** — Radius is measured from the center of the polyhedron to the center of each face.

Radius: If on, defines the Radius used to construct the polyhedron.

Face Number: Option menu that lets you select the number of faces for the polyhedron — 4, 6, 8, 12, or 20.

→ Exercise: Draw an Polyhedron Primitive Solid using AccuDraw
1 Continuing in Basic_Solids.dgn, in the 01_3D Primitives model, with the Solids Modeling task active in the Task Navigation dialog, select Polyhedron (E + 0) Primitive Solid with the following tool setting:

Method: Vertex

Axis: Points (AccuDraw)

Face Number: 20

2 Enter a data point anywhere in view, set the AccuDraw rotation to (T), and then define the radius and axis for the Polyhedron primitive.

Create Solids Toolbox

The Create Solids Tools include Solid by Extrusion, Solid by Revolution, Solid by Extrusion Along, Solid by Thicken Surface and Linear Solid.

If you need to create complex or curved solids, you can often create them from a profile element. You can extrude a profile in a straight line, along a specific 3D path with profile rotation control.
Solid By Extrusion

This tool is used to construct 3D solids from 2D profiles. It lets you extrude, or project, a planar 2D element along an axis to create a 3D object. Thus, lines become planes, circles become cylinders and blocks become slabs. When complex shapes or SmartLines are used as the profiles, quite complex solids are possible. There is an equivalent tool in the Surface Modeling task. Available element types for extrusion are:

- Line
- Line string
- Arc
- Ellipse
- Shape
- Text
- Multi-line
- Complex chain
- Complex shape
- B-spline curve

Surfaces formed between the original profile element and its extrusion are indicated by straight lines connecting the keypoints.

Tool settings are as follows.

- **Orthogonal**: When on, the sides are perpendicular to the plane of the profile element.
- **Distance**: When on, defines the distance of the projected extrusion.
- **Both Directions**: When on, the extrusion is constructed in both directions from the profile.
- **X Scale and Y Scale**: When on, specifies the scaling factor for the shape as it is being projected. Scaling is uniform about the point at which the shape is identified.
- **Spin Angle**: When on, defines the angle through which the 2D element rotates (counter-clockwise) about the axis of projection (maximum 360°). To correctly specify the rotation, you must select the shape at the point about which the rotation is to occur.
Hint: When using Spin Angle it is best to select the center of the profile as the pivot point.

- **Use Active Attributes:** When on, the surface or solid of revolution is created with the element using the active attributes. When off, the surface or solid of revolution is created with the element taking the attributes of the profile element.

- **Keep Original:** When on, the original profile element is kept. When off, the profile is deleted.

Exercise: Extruding a profile

1. Open Basic_Solids.dgn.
2. Open the model 02_Extrude 1.

 The model is part of an observation platform. Profiles for the support columns are ready to be extruded.

3. Select Solid by Extrusion (R + 1), with the following tool settings:

 Orthogonal: Enabled

 Distance: Enabled and set to 3.0

 All other options: Disabled

4. Following the status bar prompt, in the Isometric view, identify profile in the lower left.

5. Move the pointer above the profile so the extrusion is upward, and accept with a data point.

You can extrude multiple profiles, in a single operation, by first selecting the profiles with the Element Selection tool.

Exercise: Extruding multiple profiles

1. Continuing Basic_solids.dgn, in the model 02_Extrude 1, select Element Selection (1) from the Main toolbox with mode set to Block and method set to Add.

2. In the Isometric view, draw a block around the remaining 3 column profiles.

3. Select Solid by Extrusion (R + 1) with the following tool settings:
Orthogonal: Enabled

Distance: 3.00

4 **All other settings:** Disabled

5 Enter a data point to accept the selection set.

6 Move the pointer above the profiles so that the extrusion is upwards, snap to accept this direction.

Extrusions may have a scale applied to them, or a spin angle, or both.

➔ **Exercise: Extruding with Spin Angle and Scaling**

1 Continuing in Basic_Solids.dgn, open the model 03_Extrude 2.

2 Select Solid by Extrusion (R + 1), with the following tool settings:

 Orthogonal: Enabled

 Distance: Enabled and set to 8

 Spin Angle: Enabled and set to 45

 All other settings: Disabled

3 In the Isometric view, snap to the center of the left profile.
4. Move the pointer upward and accept with a data point.

5. Change the following tool settings:

 - *Spin Angle*: Disabled
 - *X Scale*: Enabled and set to 0.75
 - *Y Scale*: Enabled and set to 0.75

6. Identify the center of the center profile.
7 Move the pointer upward to extrude in that direction and accept with a data point.

8 Enable Spin Angle and set it to 45.

9 Identify the center of the right profile and extrude it upward.

With Orthogonal enabled, all extrusions are perpendicular to the plane of the element being extruded. The position of the pointer merely defines whether the projection is up or down from the profile. If you disabled Orthogonal, you can define the extrusion to be in any direction.

Solid By Revolution

When you require a curved circular extrusion, you can use the Construct Revolution tool. As with the Extrude tool, this tool also is used to construct 3D solids or surfaces from 2D profiles. In effect, a profile is revolved about an axis to create a solid or surface. Available element types for curved circular extrusion are:

- Line
• Line string
• Arc
• Ellipse
• Shape
• Complex chain
• Complex shape
• B-spline curve

Tool settings for this tool are as follows.
• Axis: Defines the direction of the axis about which the revolution is performed. Options are: Points (AccuDraw); Screen X, Y, or Z; Drawing X, Y, or Z.
• Angle: Defines the sweep angle of the revolution (about the axis).
• Use Active Attributes: When on, the surface or solid of revolution is created with the element using the active attributes. When off, the surface or solid of revolution is created with the element taking the attributes of the profile element.
• Keep Original: When on, the original profile element is kept. When off, the profile is deleted.

In the next exercise, you will rotate a profile of a rocket nozzle 360 degrees around an axis to create a solid.

⇒ Exercise: Create a solid by revolving a profile

1. Continuing in Basic_Solids.dgn, open the model 04_Revolution 1.
2. Select Solid by Revolution (R + 2) with the following tool settings:
 - Axis: Points (AccuDraw)
 - Angle: 360
 - Other settings: Disabled
3. In the Isometric view, identify the profile.
4 Snap to the top of the dash-dot line at and accept with a data point.

The proposed solid is displayed. Note that the pointer now controls the axis of the revolution. As you move it the radius changes and the solid changes in size. You can change the axis plane using AccuDraw shortcuts.

The pointer controls the location of the axis.
5 Snap to the bottom of the dash-dot line at and accept with a data point.

The solid is completed.

6 In View 4, click the View Display Mode view control and change the display mode to Smooth.

You can turn off the level Default to remove the centerline.

7 Select File > Close.

Using the Construct Revolution tool, you can create complex curved 3D solids from a 2D shape or complex shape. Equally, you can revolve an open element, such as a line string or an arc to create a curved surface.

Solid By Thicken Surface

This tool is used to add thickness to an existing surface to create a solid, by thickening it in the direction of the surface normals. Upon identifying the surface, an arrow displays showing the distance and direction of the thickening that will be added. If Add To Both Sides is on, arrows display in both directions. If Thickness is not turned on, then thickening is added graphically, with the amount of thickening defined by the screen pointer. Tool settings are:

- **Add To Both Sides**: If on, the thickness value is added to both sides of the surface.
- **Thickness**: If on, sets the thickness value that is added to the surface.
- **Face Only**: If on, lets you select an individual face of a solid or surface.
• **Full Dynamics:** If on, displays a preview. On large surfaces, the display may take a long time. Turning the toggle off will reduce the generation time.

• **Keep Original:** If on, the original profile element is retained.

⇒ **How to use Solid By Thicken Surface:**

1. Select the Solid by Thicken Surface tool.
2. Turn on Thickness.
3. In the Thickness field, enter the value for the thickening.
4. If necessary, turn on Add To Both Sides.
5. Identify the surface.
6. The surface highlights. An arrow(s) displays, showing the distance and to which side(s) the thickness will be added.
7. If Add To Both Sides is off, move the pointer, using the arrows as a guide, to select the side for thickening.
8. Accept.

Linear Solid

This tool is used to create a wall like solid (with rectangular section) by defining its alignment direction.

⇒ **Exercise: Linear Solid**

1. Continuing in Basic_Solids.dgn, open the model 05_Linear Solid.

3. Select Linear Solid (R + 5) with the following tool settings:

 Place by: Center

 Width: 0.5
Height: 3

4. Enter a data point in any view and draw the floor plan as dimensioned in the following image.
Challenge Exercises

→ Exercise: Draw a door and hardware

1. Create a new model in AccuDraw_3D.dgn. Set working units set to “m” (MU) and “cm” (SU) and work only in the Isometric view.

2. Use the Place Slab tool to create the solid door, 2.5m tall, 5cm thick and 75cm wide (Front orientation).

3. Place 2.5cm diameter cylinders for the hinges (7.5cm long starting 15cm from the top and bottom) with the center of the hinge on the edge of the door.

4. Use the Place Sphere and Place Cylinder tools to create the doorknob (5cm diameter spheres on both sides with a 2.5cm diameter cylinder, 15cm long, connecting them). Place the doorknob assembly 5cm from the edge of the midpoint of the door.

→ Exercise: Draw a floor lamp

The lip around the shade is a torus with a primary radius of 30cm and secondary radius of 2.5cm. It is placed from an edge of the shade.

The Shade is a surface Cone with a Base radius of 5cm, height of 22.5cm and Top radius of 30cm.

The Pole is a Cylinder that is 195cm high and 5cm in diameter.

The Base is Cylinder with a radius of 22.5cm and height of 5cm.
Module Review

Now that you have completed this module, let’s measure what you have learned.

Questions

1. True or False: Primitive Solids tools also let you create a Primitive Surface.
2. Which of the following can be used with the Solid by Extrusion command?
 a. Line Strings
 b. Circles
 c. B-Spline Curves
 d. Shapes
 e. All of the above
3. True or False: When you use Solid by Thicken Surface, you must thicken the surface in a perpendicular direction to the surface (in the direction of a surface normal).
4. How do you select the back face on a 3D model?
5. True or False. The new Polyhedron Primitive solid has an unlimited number of faces option.

Answers

1. False. To create Primitive Surface you must use the Surface Modeling task.
2. e. All of the above, plus many more types as well.
3. True. You can only thicken in the direction of a surface normal.
4. When selecting a face within a tool sequence select a visible face then move the cursor to a common edge and select this edge using a tentative snap, which will select the coincident face.
5. The Polyhedron Primitive Solid is limited to 4, 6, 8, 12, and 20 faces.
Module Overview

Complex solids can be created by using additional tools for solid creation and modification.

Starting with basic solids or surfaces, you can add finishing touches such as fillets and chamfers. You can use a planar closed shape or open element as a profile to create a cut out in either a surface or a solid. Use the Shell Solid tool to create a hollow solid with defined wall thickness. You can also execute Boolean operation on Solids.

Module Prerequisites

- Knowledge of AccuDraw
- Knowledge of Solid Primitives

Module Objectives

After completing this module, you will be able to:

- Use and apply the Solid Construction tools
- Use and apply the Solid Modification tools
- Modify a face, edge, or vertex, of a solid
- Remove one or more faces from a solid
- Taper the face of a solid
- Construct a solid from the union, intersection or difference of 2 or more solids
- Place a cut in a solid
• Fillet or chamfer the edge(s) of a solid
• Edit 3D primitives

Introductory Knowledge

Before you begin this module, let's define what you already know.

Questions

1. How do you place a B-spline?
2. True or False: When you change the order of a curve it can be changed to an order that is higher than the number of points used to place the curve.
3. Which view rotation best displays a model?

Answers

1. A B-spline is defined by placing control points, or poles, with a minimum of 3 poles required.
2. False. It cannot be changed to an order that is higher than the number of points used to place the curve.
3. Isometric (or Right Iso).

Working Area

Solids modeling requires greater accuracy than that required for surface modeling. The Solids setting in the Working Areas section of the DGN File Settings dialog’s Advanced Unit Settings dialog (Settings > Design File, Working Units category) lets you set a working area that determines the degree of accuracy for solids calculations.

The Parasolid solid modeling kernels used by MicroStation require coordinate data at a fixed precision. In order to guarantee enough precision is available, MicroStation defines the solids working area.
The size of the solids modeling area can be increased, but doing so will reduce the available precision. It defines an upper bound that limits the extents of any single solid so that it can be modeled to a fixed precision. This precision value is displayed in the Advanced Unit Settings dialog as Solids Accuracy.

![Advanced Unit Settings](Image)

The settings that you use depend on whether you require compatibility with V7 projects or not. For best results, in the Resolution section, set storage unit to Meter. In the Working Areas (each axis) Solids section, for V8 projects Input 1 (Kilometer) and for V7 projects Input 0.

For V8 projects, this will set the Solids Accuracy to 1E-008, which also is the Parasolids default. If you then make any changes to the Resolution setting, changing the Solids value back to 1 Kilometer will restore the Solids Accuracy to 1E-008.
Solids Modeling Task

The Solids Modeling task contains the tools for construction and modification.

Panel view of the Solids Modeling task

Create Solids, Modify Solids, and Solid Utility tools

Solid By Extrusion Along

The Solid By Extrusion Along tool is used to construct 3D solids from 2D profiles extruded along a curve called a path. It replaces the Extrude Along Path tool.

You can create solids by extruding profiles along a path element that the profile element is to follow as it is extruded. When using a profile, you can specify that the extrusion is attached to the path element, or that it uses the path element to define the direction of the extrusion from the current location of the profile.

This tool can be used to create items such as roofs, pipe work, ductwork, or handrails. You can create the extrusion with a profile or by specifying the outside and the inside radii, where a circular solid or a hollow pipe is being constructed.
When Circular is selected for extrusions, the ends are capped.

The profile rotation can be determined by the curve geometry or the profile may be locked in a specific direction. This tool also permits self intersecting geometry, but when this condition exists, time for creation is slower.

For those that have used prior versions you will notice the absence of the Path to Profile and Profile to Path Attachment options which are no longer available in the MicroStation V8i version. After selecting a profile, you have a small ball that is the Change Start Point. This point can be dragged to modify the start of the path, giving you the same functionality as previous versions for Path to Profile or Profile to Path.

Available element types for extrusion are:

- Ellipse
- Shape
- Text
- Multi-line
- Complex chain
- Complex shape
- B-spline curve

Open elements are not valid, as they would produce a Surface. If you need an open element, use the Surface by Extrusion Along command, from the Surface Modeling task.

Tool settings are as follows:

Alignment: Determines the orientation of the profile element as it is extruded.

- **Normal** — As the profile is extruded, it maintains a fixed relationship with the normal plane of the path.
- **Parallel** — As the profile element is extruded, it remains aligned parallel to its original position.

Scale: When enabled, and value is entered you are prompted to enter the scale point, the point that the result is scaled about.

Spin: When on, defines the angle through which the 2D element rotates (counter-clockwise) about the axis of projection (maximum 360°).

Hint: When using Spin Angle it is best to select the center of the profile as the pivot point.

Lock Profile Rotation: When you need to keep the end profile in the same position as the start profile enable the Lock Profile Rotation option. Here
you select the path, profile or face, and then you must select the start of the lock direction and the end point of the locked direction.

Profile on left created with Lock Profile Rotation disabled and on right with Lock Profile Rotation enabled

This direction is an up vector indicating the position in a Cartesian coordinate system.

The up vector, which determines the rotation direction start and end point for a Locked Profile Rotation

Circular: When this option is enabled a profile is not necessary to complete construction. You must also enter an inside and outside radius to complete construction.

Solid By Extrusion Along with Circular option. On Left path and on right results with inside and outside diameters.
Allow Self-Intersection: If the curvature of the path is too small for the profile to be swept through the path due to a self intersection of the profile then you can Enable Allow Self-Intersection.

Keep Path: When on, the original path element is kept. When off, the path is deleted.

Keep Profile: When on, the original profile element is kept. When off, the profile is deleted.

Exercise: Solid By Extrusion Along with Lock Profile Rotation

1. Open Advanced_Solids.dgn, in the 01_Extrusion model, with the Solids Modeling task active in the Task Navigation dialog,

2. Select Solid By Extrusion Along (R + 3) with the following tool settings:

 Alignment: Normal

 Enable: Lock Profile Rotation

 All others default.

3. Select the helical path at the start point and then snap to the middle bottom of the profile where it intersects the helical path, then accept the profile.
4 Place the start point of the lock direction at the bottom of the path and the end point of the locked direction (up vector) in the direction of the axis of the path.

5 Accept with a data point.

→ Exercise: Solid By Extrusion Along with Spin Angle

1 Continue in Advanced_Solids.dgn, open the model 02_Extrusion.

2 Make the Solids Modeling task active in the Task Navigation dialog. You will create one of the cutting blades pictured in the image below.

3 Select Solid By Extrusion Along (R + 3) with the following tool settings:

 * **Alignment:** Normal
 * **Enable Spin:** Set angle to 60 degrees.
 * **Keep Path:** Enabled
 * **Other Settings:** Disabled

4 Select the straight line for the path and the closed shape for the profile

5 Select path and profile.
6 Accept with a data point.

You will now use this tool to create a pipe.

Exercise: Extrude pipe

1 Continuing in Advanced_Solids.dgn, open the model 03_Extrude Pipe.

2 Make the Solids Modeling task active in the Task Navigation dialog.

3 Select Solid by Extrusion Along (R + 3) with the following tool settings:
 Circular: Enabled
 Inside Radius: Enabled and set to 140
 Outside Radius: Enabled and set to 143
 Other Settings: Disabled

4 In the Isometric view, identify the dashed path element with a data point anywhere along its length.

5 Accept with a data point to view the construction.
 Depending on system specifications, this may take a few seconds.
 The proposed pipe is calculated and displayed.

6 Accept the construction with a second data point.

The circular pipe extruded along the path element.

When using a profile as the template for the extrusion, you can create the extrusion directly from the position of the profile element, offset from the path element, or create the extrusion by attaching the profile to the path element.
Exercise: Create extrusions with other options

1. Continuing in Advanced_Solids.dgn, open the model 04_Extrude Duct.

2. Select Solid by Extrusion Along (R + 3), with the following tool settings:
 - **Alignment**: Normal
 - **All others**: Disabled

3. Identify the lower dashed path element with a data point, anywhere along its length.

4. Identify the square green profile and accept with a data point to see the construction.

5. Accept with a data point, to view the extrusion.
The proposed extrusion is calculated and displayed.

6 Identify the middle dashed path element with a data point, anywhere along its length.

7 Identify the arc green profile at one of its end points and accept with a data point to see the construction.

8 Accept the construction with a data point.

9 Select the upper dashed path and then select the elliptical solid.

10 Select the back face (larger ellipse) to extrude.

11 Enter a data point to accept construction.
12 Fit View to see the extrusion.

Remember, where required, you can specify that the extrusion is attached to the path element. You do this by moving the, at the point on it that you want attached to the path element.

Exercise: Create an extrusion attached to the path element

1 Continuing in Advanced_Solids.dgn, open the model 05_Extrude Handrails.
2 Select Solid by Extrusion Along (R + 3) with the following tool setting:
 Alignment: Normal
3 Identify the green path element with a data point, anywhere along its length.
4 In View 2, select the left red profile element.
5 Accept with a data point.
6 Enter a data point to view the proposed extrusion.
7 Accept the construction with a data point.
8 Repeat this procedure to construct a handrail along the yellow path, using View 3 to snap to the right red profile.
9 Use the view controls tools, such as Rotate and Zoom In/Out, to inspect the construction.

After extruding the handrails

Observing the other views, you can verify that the extrusion follows the alignment of the path element exactly.

➦ Extra Exercise: Extruding a road cross section

1 Continuing in Advanced_Solids.dgn, open the model EXTRA_Extrude Bridge.

2 Use the Bridge Cross section and center, cyan, path element to create the bridge.

3 Use the 3 Guard Rail cross sections and the cyan path elements to create the guard rails.
Shell Solid tool

You can use the Shell Solid tool to hollow out a solid, leaving it with walls of a defined thickness. Where necessary, you can specify that 1 or more faces are removed to create an opening. Tool settings for this tool are as follows.

- **Shell Thickness**: Sets the wall thickness for the remaining faces of the shelled solid.
- **Shell Outward**: If on, material is added to the outside of the existing solid. The existing solid defines the inside of the walls of the shelled solid.

Selecting/deselecting faces for removal

After selecting the solid for shelling, as you move the pointer over it, the face nearest the pointer highlights. Entering a data point selects the dashed highlighted face, which then remains highlighted. To select additional faces, hold down the Ctrl key and move the pointer over the solid to highlight the face. You then can use Ctrl data points to select additional faces for removal.

To select a face that is behind another face in the view, enter a data point, or Ctrl data point, on the face, which will highlight the nearest face. Then reset until the required face highlights.

Resetting also can be used to deselect the last face selected. Subsequent resets deselect faces in the reverse order. The last face selected is the first face deselected.

In the following exercises, you will create shelled solids both with and without openings.

➔ **Exercise: Create a shelled solid with no openings**

1. Continuing in Advanced_Solids.dgn, open the model 06_Shell 1.
2. Select Shell Solid (T + 5) with the following tool settings:

 Shell Thickness: 15

 Shell Outward: Disabled
3. In any view, identify the green solid.

 The solid highlights. As you move the pointer over the solid, the various faces highlight in a heavier weight dashed line.
4. Move the pointer away from the solid, so that no faces are highlighted, and enter a data point.
5 Click on View Display Mode and select:

Mode: Hidden Line

The solid is hollowed out. As there are no openings, rendering the view would display only the outside surface.

6 Select *Edit > Undo*.

➔ **Exercise: Create a shelled solid with the top and front face removed**

1 Continuing in Advanced_Solids.dgn, in the model 06_Shell 1, select Shell Solid (T + 5) with the following tool settings:

Shell Thickness: 15

Shell Outward: Disabled

2 In the Isometric view, identify the green solid with a data point.

3 Move the pointer over the solid until the top face highlights, and then enter a data point.

![Diagram](image1)

The top face now is highlighted as a heavier weight solid line.

4 Press Ctrl and select the front face.

![Diagram](image2)
5 Accept with a data point.

The solid is shelled and the top face removed.

6 Set View 4’s View Display Mode to Smooth and use the view controls tools, such as Rotate and Zoom In/Out, to inspect the construction.

You can use any view to highlight the faces. For example, if you move the pointer into the Top view, the top face is nearest the pointer and is selected immediately. Generally, a rotated view, such as the Isometric, is easier to use because you can see exactly which surface is highlighted. Additional surfaces can be added by using the Ctrl key and accepting with a data point.

If a solid has rounding and/or one or more holes through it, the Shell Solid tool recognizes these and shells around them accordingly.

Warning: If the rounding radius is smaller than the offset radius, it cannot be offset and will not shell.

→ Exercise: Shell a solid containing rounding and holes

1 Continuing in Advanced_Solids.dgn, open the model 07_Shell 2.

2 Select Shell Solid (T + 5) with the following tool settings:

 Shell Thickness: 5

 Shell Outward: Disabled

3 Identify the green solid with a data point.
4 Move the pointer over the solid until the top surface highlights, and then enter a data point.

The top surface of the solid highlighted.

5 Accept with a data point to complete the shelling.

The solid after shelling and removing the top surface

6 Set View 4’s View Display Mode to Smooth and use the view controls tools, such as Rotate and Zoom In/Out, to inspect the construction.

Using the Shell Solid tool can save you considerable modeling time, particularly when the design has uniform thickness walls, as in the previous example.

Working in the opposite direction, you can create solids from surface elements. Earlier, you used the Extrude tool to create a solid from a planar surface. If the existing surface is not planar, however, the extrude tool will not work. In these cases, you can use Solid by Thicken Surface.
Solid by Thicken Surface tool

You can use the Solid by Thicken Surface tool to add thickness to an existing planar or non-planar surface, thus creating a solid. Upon identifying the surface, an arrow displays showing the distance and direction of the thickening to be added. If Add To Both Sides is on, arrows display in both directions.

If Thickness is not turned on, then thickening is added graphically, with the amount of thickening defined by the cursor. If Add To Both Sides is off in these cases then the screen pointer also defines the direction of the thickening. Tool settings are as follows.

Add To Both Sides: If on, the thickness value is added to both sides of the surface.

Thickness: If on, the value in the field determines the amount of thickening added.

Face Only: If on, lets you select an individual face of a solid or surface.

Full Dynamics: If on, displays a preview. On large surfaces, display may take a long time. Turning the toggle off will reduce the generation time.

Keep Original: If on, the original surface is retained.

In the following exercise, you will extrude a line string and then thicken it to create a section of office partitioning.

Warning: Thickness may be too large to permit the solid surface to be offset, since the solid would overlap itself. This tool does not allow for self-intersection.

➤ **Exercise: Draw a shape and add thickness**

1. Continuing in Advanced_Solids.dgn, open the model 08_Office. This model has 2 office cubicles, with a line string showing the centerline for the proposed partitioning.

2. Select Surface by Extrusion (Surface Modeling Task, T + 1), with the following tool settings:
 - *Orthogonal:* Enabled
 - *Distance:* Enabled and set to 1500
 - *Other Settings:* Disabled

3. In any view, select the red line string and accept with a data point.
4 Move the pointer upward to direct the extrusion upward, and accept with a data point.

5 Select Thicken to Solid (Solids Modeling Task, R + 4) with the following tool settings:

 Add To Both Sides: Enabled
 Thickness: Enabled and set to 25

6 Select the extruded line and accept with a data point.

The shape highlights and arrows appear, showing the direction and size of the thickening. Because you are adding thickness to both sides of the surface, you don’t have to worry about the direction of the thickening.

Replace Face

The Replace Face tool lets you replace a face of a solid with a selected surface. The result is a solid that has the selected surface as one of its faces.

How to use Replace Face:

1. Select the Replace Face tool.
2. Identify the solid.
3. Select the face to be replaced.
4. Identify the surface and the face of the surface to be used as a replacement face, if necessary, and accept.

You can experiment with the model EXTRA_Replace Face.

Boolean tools

Three tools in the 3D Modify toolbox let you unite, intersect, or subtract solids. They let you create a complex solid from two or more existing solids.

Unite Solids tool

With the Unite Solids tool, you can unite, into a single solid, two or more overlapping solids or solids that have coincident faces. This is very useful for grouping several separate solids into a solid, from which the finished model can be produced.

In the tool settings, Keep Originals lets you choose to retain in the model the First, Last, All, or None.

All: All of the original solids are retained.

First: The first solid identified is retained.
Boolean tools

Last: The last solid identified is retained.

None: None of the original solids are retained.

When constructing a union of solids, you can use the Element Selection tool to select the solids first, or select the tool first, then the solids.

When you use the first method, the color of the resulting solid is that of the (selected) solid that was placed in the file first. When you use the second method, the color of the resulting solid is that of the first solid selected.

As with the other exercises, you will work in the Isometric view which displays two copies of a simple window frame, each created from eight slabs.

Exercise: Construct the union of solids using Element Selection

1. Continuing in Advanced_Solids.dgn, open the model 09_Unite Solid.
2. Make the Solids Modeling task active in the Task Navigation dialog. You will consolidate these individual solids into a single entity. First, you will select the solids using Element Selection.
3. Select the Element Selection tool (1) with the following tool settings:
 - **Method:** Block
 - **Mode:** New
4. In the Isometric, Top, or Front view, place the block around all elements that make up the window on the left.
 - The selected solids highlight.
5. Select Unite Solid (T + 7) with Keep Originals set to None.
6 Enter a data point to accept the union.

The separate solids are united into a single solid. The resulting solid (left) is red because one of the red slabs was placed in the model before the other slabs.

When you select the solids individually, the color of the first solid selected is the color that is used for the combined solid.

➔ Exercise: Construct the union of solids, selecting each solid separately

1 Continuing in Advanced_Solids.dgn, in the model 09_Unite Solid, with the Unite Solid tool (T + 7) still active, identify one of the green frame members in the window on the right with a data point.

 The slab highlights.

2 Identify the remaining slabs that make up the window with data points so that all are highlighted.

3 Enter a data point to accept the construction.

 The solids are united into a single green solid.

If you happen to miss one or more of the solids, you can repeat the process, adding the solids that were left out, remembering that the first solid chosen defines the color of the united solid.
Boolean tools

Intersect Solids tool

Using the Intersect Solids tool, you can create a solid of a common volume of two or more overlapping solids.

In the tool settings, the Keep Originals setting lets you choose to retain in the model the First, Last, All, or None of the original solids.

When constructing an intersection of solids, you can select the solids first, followed by the tool, or you can select the tool first, then the solids.

When you use the first method, the color of the resulting solid is that of the (selected) solid that was placed in the model first. When you use the second method, the color of the resulting solid is that of the first solid selected.

Where you have 2D elevations of a design, often you will be able to use them to create extrusions of each elevation. From there you can use the Intersect Solids tool to create the finished solid.

In the following exercise, you will construct a 3D chair from the intersection of extrusions created from its front and side views.

> **Exercise: Create a solid from the intersection of 2 existing solids**

1. Continuing in Advanced_Solids.dgn, open the model 10_Intersection.

 ![Illustration of a chair created by the intersection of extrusions]

 You see 2 sectional views of the chair. First, you will extrude these sections.

2. Select Solid by Extrusion (R + 1) with the following tool settings:

 Orthogonal: Enabled
Boolean tools

Distance: Enabled and set to 600

All other settings: Disabled

3 In the Top view, identify the green shape and extrude it to the right.

4 Repeat the previous step for the violet shape, extruding it upward.

5 Select Intersect Solids (T + 8) with Keep Originals set to None.

6 Identify the green and violet solids with data points, in any view.

7 Enter a data point to complete the construction.

The resulting solid is green because the green solid was the first chosen.

Smooth shaded view of the completed chair.
Subtract Solids tool

With the Subtract Solids tool, you can subtract from a solid the volume of one or more overlapping solids. Additionally, you can subtract a part of a solid back to an intersecting surface.

As with the other boolean tools, the tool setting Keep Originals lets you choose to retain in the model the First, Last, All, or None of the original solids.

➤ **Exercise: Construct the difference between solids**

 A green cone with a blue cylinder overlapping it is displayed.

2. Select Subtract Solids (T + 9) with *Keep Originals* set to None.

3. With a data point, identify the green solid.

4. With a data point, identify the blue cylinder.

 The blue cylinder highlights.

5. Enter a data point to complete the construction.

Before (left) and after (right) subtracting the blue cylinder from the green solid.

If you want to subtract several solids, you can select them all prior to accepting or use Ctrl+Data to select them in the command.

6. Turn on the level Tap Cutouts in the Isometric view.

 Additional red cylinders now display.

7. Select Subtract Solids (T + 9) with Keep Originals set to None.

8. Identify the green solid with a data point.
9 Identify one of the red cylinders and the rest with Ctrl+data, so that they are all highlighted.

10 Enter a data point to complete the subtraction.

If multiple solids are to be subtracted, it is often quicker to use the Element Selection tool to select them all prior to selecting the Subtract Solids tool.

You can use the same tool to subtract part of a solid back to where a surface intersects it. This can be useful for creating solid ground surfaces.

In the following exercise, you will subtract part of a slab back to a B-spline surface representing the existing ground for a construction project. For this kind of construction, the part of the solid that is retained is defined by the surface normals of the surface element.

You can check the direction of the surface normals and, if necessary, reverse them with the Change Normal Direction tool.

Exercise: Subtract a solid back to a surface

 The model contains a slab and a B-spline surface.

2. Select Change Normal Direction (Surface Task, S + 6).
3 Identify the orange B-spline surface. Enter a data point on the big green arrow to change the normal direction.

4 In the Solids Task, select Subtract Solid (T + 9), with Keep Originals set to None.

5 Identify the green slab.

6 Identify the orange B-spline surface.

7 Accept to complete the operation.
The part of the solid that is retained is below the surface, in the direction that the surface normals were pointing.

Using the 3D primitive solids, extrusions and the three boolean tools, you can create the basics for quite complex models. Other tools in the 3D Modify task let you add cuts, fillets and chamfers.

Cut Solids by Curves tool

With the Cut Solid tool, you can place a cut in a solid using a template or cutting profile. Cutting profiles may be open or closed elements, but open elements must extend to the edge of the solid. When you use an open element as a cutting profile, the identification point for the solid determines the portion of the solid that is retained. If Split Solid is enabled, however, no material is removed. In these cases, the solid is merely split at the cutting profile. Tool settings are as follows.

- **Cut Direction** sets the direction of the cut, relative to the cutting profile’s Surface Normal.
 - Both: Cuts both directions from the profile’s plane
 - Forward: Cuts forward from the profile’s plane (in the direction of the Surface Normals).
 - Back: Cuts back from the profile’s plane (in the reverse direction of the Surface Normals)

- **Cut Mode** sets the limits of the cut.
 - Through: Cuts through all faces of the solid.
 - Define Depth: Cuts into the solid a defined distance.

- **Cut Depth** (Cut Mode set to Define Depth only) Sets the depth of the cut.
 - Split Solid: If on, no material is removed from the solid; it is split into 2 or more segments.
 - Keep Profile: If enabled, the original cutting profile remains in the model

In the following exercise, you will use a template of the earthworks cross-section to place a cut in the existing ground section that you created previously. You will see that you can change the settings for the cut prior to accepting.

⇒ **Exercise: Place a cut using a cross-section template**

2. Select Cut Solid by Curves (T + Q), with the following tool settings:
 - Cut Direction: Forward
 - Cut Mode: Through
 - Split Solid and Keep Profile: Disabled

3. In any view, identify the green solid.

4. Identify the red cutting profile.

The direction arrow for the cut is pointing away from the solid. This is clearly visible in the Top, Front, and Isometric views.

5. Change the following tool setting:
 - Cut Direction: Back

 Note that the direction arrow now points toward the solid.
6 Accept to make the cut.

If you had enabled Split Solid, then the cut would have split the solid, but not removed the cut section. You could use this procedure when you want to measure the volume of the material being removed, using the Measure Volume tool. The cut volumes could be stored on a separate level for future checking.

When you have multiple cuts to apply to a solid, you can perform the operation in 1 step by selecting all the cut profiles prior to selecting the tool. For example, you could create a shell of a building and then draw blocks for the windows and doorways. These could be cut in a single operation. The direction of the cut is controlled by the surface normal of the cutting profile and the Cut Direction setting of the Cut Solid tool. In the following example, the cutting profiles all have their surface normals pointing away from the center of the building.

Exercise: Place multiple cuts in a solid

1 Continuing in Advanced_Solids.dgn, open the model 14_Cut Solid 2.

2 Select Element Selection (1) and use it to select all of the red cutting profiles.

Hint: Use element attributes and Element Selection to select more quickly.

3 Select Cut Solid by Curves (T + Q), with the following tool settings:

Cut Direction: Forward
Cut Solid by Curves tool

Cut Mode: Through

Split Solid and *Keep Profile*: Disabled

4 Identify the green building shell with a data point.

5 Accept with a data point to complete the cuts.

6 The openings for the doorways and windows are cut through the solid.

Before (left) and after (right) cutting the window and doorway openings.

If you want to place cuts only part way through a solid, you can set Cut Mode to Define Depth and specify the Cut Depth. In the following exercise, for example, you will cut slots into a timber stairway stringer to accommodate the steps. The profiles for the steps have been located on the face of the stringer.

➤ **Exercise: Place a partial cut in a solid**

1 Continuing in Advanced_Solids.dgn, open the model 15_Cut Solid 3.

2 Select Element Selection (1) and select all the red rectangular profile elements.

All the cutting profiles are highlighted.

3 Select Cut Solid by Curves (*T + Q*), with the following tool settings:

Cut Direction: Back

Cut Mode: Define Depth

Cut Depth: 25

Split Solid: and *Keep Profile*: Disabled

While you only require the cut to be in 1 direction, you can use Both in this situation because the profiles are on the face of the solid. This saves
you time checking the direction of the profiles’ surface normals in order to select the correct cut direction.

4 Identify the green solid.
5 Accept to complete the construction.

Fillets and Chamfers

You can use the Fillet Edges and Chamfer Edges tools to apply rounding or chamfers to 1 or more edges of a solid, extruded surface, or surface of revolution. From a basic solid, you can add fillets and/or chamfers to produce the finished design.

Fillet Edges tool

Tool settings for this tool let you define the radius of the fillet and whether to select tangential edges.

- Radius defines the radius of the fillet.
- Select Tangent Edges: If on, edges that are tangentially continuous are selected and filleted in 1 operation.
Chamfer Edges tool

Tool settings for this tool let you define the trim distances for the chamfer, whether to select tangential edges, and the option to reverse the trim distances for the chamfer where they differ.

- Distance 1 and Distance 2: Sets the distances to trim back the faces.
- Lock Control: If enabled Distance 1 and Distance 2 are constrained to the same value. If disabled Distance 1 and Distance 2 may be different values.
- Select Tangent Edges: If on, edges that are tangentially continuous are selected and chamfered in 1 operation.
- Flip Direction: When Distance 1 and Distance 2 are different, reverses the direction of the chamfer and the values that the faces are trimmed.

Selecting edges for filleting or chamfering

After identifying the solid, as you move the screen pointer over it, the edge nearest the pointer highlights. Entering a data point selects the highlighted edge, which then remains highlighted. To select additional edges, simply hold down the Ctrl key and move the pointer over the solid. You then can use Ctrl data points to select any additional edges for chamfering or filleting.

Deselecting edges for filleting/chamfering

Where you select an incorrect edge, a Reset deselects the edge. If you have selected a number of edges, consecutive resets will deselect the edges in the reverse order. The last edge selected is the first edge deselected.

➤ How to fillet/chamfer 1 or more edges of a solid, extruded surface, or surface of revolution:

Select the Fillet Edges or Chamfer Edges tool.

Identify an edge to fillet/chamfer with a data point. The solid highlights with the selected edge highlighted in a heavier weight line.

Enter a data point away from any of the edges to accept the construction.

—or—

Using Ctrl data points, identify additional edges to be filleted/chamfered.

Enter a data point away from any of the edges to accept the construction of fillets/chamfers at all the selected edges.
Correcting an incorrectly constructed chamfer

When you construct a chamfer with different values for Distance 1 and Distance 2, it may be in the wrong direction. Distance 1 and Distance 2 are applied to the wrong faces.

How to correct a chamfer that is constructed in the wrong direction:
1. Undo the chamfer(s).
2. Enable Flip Direction.
3. Reconstruct the chamfer(s).

Let’s see how the fillet and chamfer tools work. In the next exercise, you will finish a glass topped table, adding rounding and chamfers to its basic form.

Exercise: Fillet an edge of a solid
1. Continuing in Advanced_Solids.dgn, open the model 16_Fillet.
2. Select Fillet Edges (T + W) with the following tool settings:

 * **Radius:** 20
 * **Select Tangent Edges:** Disabled
3. Identify the inside edge of the table’s frame at location 1 with a data point.
 The solid highlights with the selected edge additionally highlighted.
4. Move the pointer away from any edges and accept with a data point.
 The fillet is constructed for the selected edge.

Multiple edges can be filleted (with the same radius) in the 1 operation.

Exercise: Fillet the remaining edges of the frame
1. Continuing in Advanced_Solids.dgn, in the model 16_Fillet, with Fillet Edges still active, identify the inside edge of the frame at location 2. The edge highlights.

2. While holding the Ctrl key, move the pointer over the solid and note that the edges highlight as the pointer passes over them.

3. Enter a Ctrl data point at locations 3, and 4. These edges now highlight along with the first edge selected.

4. Releasing the Ctrl key, move the pointer away from any edges and enter a data point to complete the construction.

All 3 edges are filleted.

5. Change the following tool setting:

 Radius: 45

6. Use Ctrl data points to select the outer edges of the frame near locations 1 through 4.

7. Move the pointer away from any edges and enter a data point to complete the construction.

When applying fillets to a solid, you should consider the order in which the fillets are applied. Because you filleted the corners of the table frame first, you will now be able to fillet the edges of the frame in 1 step, using the Select Tangent Edges setting.

Exercise: Fillet the vertical edges of the table frame
1 Continuing in Advanced_Solids.dgn, in the model 16_Fillet, select Fillet Edges (T + W) with the following tool settings:

 Radius: 7.5
 Select Tangent Edges: Disabled

2 Identify the vertical edge of the table frame at location 5.
 Note that only the straight section of the edge highlights.

3 Reset.

4 Change the following tool setting:
 Select Tangent Edges: Enabled

5 Identify the edge at location 5.

 ![Diagram](image)

 Note that the entire edge highlights this time.

6 Accept, away from the solid, to complete the construction.
7 Complete the table frame by filleting the remaining 7 vertical edges, along with their tangent edges.

When you select an edge for a fillet or chamfer and the wrong edge highlights, you can reset until the correct edge highlights. If you are selecting multiple edges using Ctrl data points, you can still reset, without the Ctrl key, to highlight the correct edge before proceeding. You may need to make use of this method during rounding of the corners of the table top.

Exercise: Round the corners of the table top

1 Continuing in Advanced_Solids.dgn, in the model 16_Fillet, select Fillet Edges (T + W) with the following tool setting:

 Radius: 40

2 Enter a data point on the lower left vertical edge of the blue table top. If the incorrect edge highlights, enter resets until the short vertical edge is highlighted.

3 Use a Ctrl data point to select another of the vertical edges of the table top.

 If the incorrect edge highlights, release the Ctrl key and reset until the correct edge highlights.
4 Repeat the previous step to select the remaining corners of the table.

5 When all 4 corners are selected, accept with a data point entered away from the solid.

Chamfers are applied the same way as fillets. In this exercise, you will add chamfers to the upper and lower edges of the glass table top.

➤ Exercise: Chamfer the upper and lower edges of the table top

1 Continuing in Advanced_Solids.dgn, in the model 16_Fillet, select Chamfer Edges \((T + E)\) with the following tool settings:

 Distance 1 and Distance 2: locked and set to 5

 Select Tangent Edges: Enabled

2 Identify the top edge of the blue table top.

 The entire edge highlights.

3 Use a Ctrl data point to identify the lower edge of the blue table top.

 Both edges now are highlighted.
4 Move the pointer away from the highlighted edges and accept with a data point.

Detail showing corner of table top before (left) and after (right) chamfering the edges.

Taper Solid tool

The Taper Solid tool is used to narrow or widen one or more faces on a solid. The amount of taper applied is controlled by the Draft Angle setting.

Draft Angle: Sets the angle to be applied to the taper. The draft plane is parallel to the face that is to be tapered.

Add Smooth Faces: If on, any tangentially continuous faces are included with the selected face. If off, only the selected portion of the tangentially continuous face is tapered.

Selecting the face(s) to taper

After identifying the solid, as you move the screen pointer over it, the face nearest the pointer highlights. Entering a data point selects the highlighted face, which then remains highlighted. To select additional faces, simply hold down the Ctrl key and move the pointer over the solid. You then can use Ctrl data points to select any additional faces for tapering.

To select a face that is behind another face in the view, enter a data point, or Ctrl data point, on the face, which will highlight the nearest face. Then reset until the required face highlights.
Deselecting faces to taper

If you select an incorrect face, a reset deselects the face. If you have selected a number of faces, consecutive resets will deselect the faces in the reverse order. The last face selected is the first face deselected.

Defining the taper origin

After selecting the face(s) to be tapered, the next data point defines the start point for the taper. This can be a point above or below the selected face.

⇒ Exercise: Taper a single face

2. Select Taper Solid (T + 4), with the following tool settings:
 - Draft Angle: 5
 - Add Smooth Faces: Disabled
3. Identify the solid so that it highlights.
4. Move the pointer to location 1 and enter a data point to highlight the face.

Only the selected face highlights in a different color.

5. Accept the face with a data point.
6. Snap to the vertex at location 2, and enter a data point to set the starting point of the taper. Choose Front, <F> or Side, <S> rotation.
7 Snap to the vertex at location 3 to define the draft plane normal vector for the taper.

8 Accept to taper the selected face.

In the previous exercise, you tapered just the selected section of a face that is tangentially continuous around 3 sides of the solid. If required, you can taper all sections of such a face in 1 step.

➔ Exercise: Taper multiple (tangentially continuous) faces

1 Continuing in Advanced_Solids.dgn, open the model 18_Taper 2.

2 Select Taper Solid (T + 4), with the following tool settings:

 Draft Angle: 5
Add Smooth Faces: Enabled

3 Identify the solid so that it is highlighted.

4 Move the pointer to location 1 and enter a data point to further highlight the face.

5 The selected face highlights, along with all tangentially continuous faces.

6 Reading your prompt, accept with a data point.

7 Snap to the vertex at location 2, and enter a data point to set the starting point of the taper.

8 Snap to the vertex at location 3, to define the draft plane normal vector for the taper.
9 Accept to taper the selected faces.

10 Select File > Close.

Edit 3D Primitive tool

At times, you may place a number of 3D primitives, extrusions or revolutions as a starting point in creating a more complex solid. After you have placed any of these elements in a model, you can use the Edit 3D Primitive tool to modify them by editing their parameters. Dimensions available for editing depend on the 3D primitive element selected.

<table>
<thead>
<tr>
<th>3D Primitive</th>
<th>Editable parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab</td>
<td>Length, Width, and Height</td>
</tr>
<tr>
<td>Sphere</td>
<td>Radius</td>
</tr>
<tr>
<td>Cylinder/Cone</td>
<td>Top Radius, Base Radius, and Height</td>
</tr>
<tr>
<td>Torus</td>
<td>Primary Radius, Secondary Radius, and Angle</td>
</tr>
<tr>
<td>Wedge</td>
<td>Radius, Angle, and Height</td>
</tr>
<tr>
<td>Extrusion</td>
<td>Distance</td>
</tr>
<tr>
<td>Revolution</td>
<td>Angle of revolution</td>
</tr>
</tbody>
</table>

Note: If you require greater flexibility with parametric editing of solids, you should work with feature solids.
How to edit a 3D primitive:

1. Select the Edit 3D Primitive tool (T + R).
2. Identify the primitive.
3. Accept to open the Edit dialog.
4. Make changes to the parameters in the dialog as required.
5. Click OK to make changes.

You can see how this tool works for yourself. A number of example solids are present in model EXTRA_Edit Primitives, in Advanced_Solids.dgn.

Challenge Exercise: Draw a solid

1. Draw the following solid (all dimensions are shown in mm).

![Diagram of solid with dimensions](image)

Start with a 40 x 40 x 10 slab.

Draw a block and create the 12 x 6 (through) cutout at the rear of the object.

Draw 2 19 x 18 blocks and create the 6 deep cutouts in the top face.

Add the 6 x 6 chamfer and the 6 radius fillet.
Challenge Exercise: Draw an Impeller

1. Draw the following solid (all dimensions are shown in mm).

There are many approaches to creating a 3D solid model. The following are suggested techniques for creating the impeller:

- Solid by Extrusion or cylinder solid
- Solid by Extrusion Along
- Copy by Polar Array
- Modify Solid Entity
Module Review

Now that you have completed this module, let’s measure what you have learned.

Questions

1. What does the Solids setting in the Working Areas section of the DGN File Settings dialog’s Advanced Unit Settings dialog do?
2. What happens if you increase the size of the solids modeling area?
3. When using Extrude Along Path, how can you specify that the extrusion is attached to the path element?
4. What do the Boolean tools do?

Answers

1. It lets you set a working area that determines the degree of accuracy for solids calculations.
2. It will reduce the available precision.
3. By snapping to the profile, at the point on it that you want attached to the path element.
4. They let you unite, intersect, or subtract solids. They let you create a complex solid from 2 or more existing solids.
Module Review

Now that you have completed this module, let’s measure what you have learned.

Questions

1. When rotating a view using cube rotation, what does the Preserve World Up option do?
2. True or False: When you use key-ins, or use the view rotation tools from the toolbox, the tool applies to the active view.
3. What is the Active Depth?
4. What is the difference between using a 2D as opposed to a 3D element to define a clip volume?
5. How do you modify a clip volume?
6. How do you save a clip volume?
7. What is the difference between a clip mask and a clip volume?
8. Where do you modify the display of the Front and Back portion of a Clip Volume?

Answers

1. When you are moving the pointer left or right, if Preserve World Up is enabled it rotates the view about the model’s z-axis. If it is disabled it rotates the view about its y-axis.
2. True.
3. The Active Depth is a plane, parallel to the view or screen, which is always located within the Display Depth of a view. The Active Depth of a view determines where data points fall by default. If you enter a data point in a 3D view, without snapping to an existing element, it falls on the Active Depth plane.
4. When you use a 2D shape, the clipping volume is created by sweeping the 2D shape through the entire model. When a 3D element is used, it defines the entire clip volume.
5. Clipping elements can be manipulated or modified with the standard MicroStation tools.
Conceptual Modeling

Module Overview

Push-Pull Modeling or Conceptual Modeling technology lets you quickly create and modify solids interactively, by adding or removing faces, edges and vertices and pushing and pulling faces, edges and vertices.

Module Prerequisites

- Knowledge of AccuDraw in 3D
- Knowledge of Basic Solid Modeling

Module Objectives

After completing this module, you will be able to:

- Use the Draw on Solid tool
- Use the Modify Solid Entity tool
- Use the Delete Solid Entity tool
Introductory Knowledge

Before you begin this module, let's define what you already know.

Questions

1. How can you move focus to the AccuDraw window?
2. What is the minimum requirement to describe a planar surface?

Answers

1. Press F11, or press Esc and then the space bar.
2. For 3D models, the 3 previous data points are considered, as this is the minimum requirement to describe a planar surface.
Conceptual Modeling Tools

The Draw on Solid tool is in the 3D Modify toolbox. It lets you draw lines, shapes, and circles, directly onto the face of an existing solid, or you can imprint a curve onto the face. These additions become faces that can be modified with the Modify Solid Entity tool, which lets you push and pull on faces and vertices.

The tool recognizes the nearest face under the pointer and matches the AccuDraw drawing plane to the selected face.

Note: If a drawn line does not intersect with an existing edge, it is extended or trimmed back to the edge.

Draw on Solid is used to create an edge on a solid by drawing the following onto the face of a solid:

- Line
- Line string
- Block
- Circle
- Shape
• or imprinting a Curve

![Image of a curve imprinting on a solid]

Using Draw on Solid on a face of a slab

The solid, including the newly created edges, vertices and faces can be modified with the Modify Solid Entity tool, or deleted with the Delete Entity tool.

![Image of modifying a newly created edge]

Modifying the newly created edge

For the Imprint Curves option, you can select a face located behind another by entering 1 or more resets, or using a different view.

![Image of imprinting a curve onto a face of a solid]

Imprinting a curve onto a face of a solid.

The Offset option lets you draw lines offset from edges of the face of a solid. These edges can include edges previously drawn on the face of the solid.

- Loop — Selects all edges surrounding the identification point on the face of the solid.
- Edges — Lets you select one or more edges on a face of a solid. Use <Ctrl> + Data points to select additional edges.

→ Exercise: Quick Test of Draw On and Modify Solid
1. In a new file, try re-creating the above solids.
2. Use Place Slab, then Draw On Solid.
3. Then use Modify Solid to adjust the solid.

Modify Solid Entity

The Modify Solid Entity tool is in the Solids Modeling task. It is used to manipulate a face, edge, or a vertex, of a solid by pushing or pulling it interactively.

Icons in the tool settings let you select All, a Face, an Edge, or a Vertex when you are selecting the item to modify. These options determine what you modify, and how the entity is selected.

Tool Settings are as follows.
- **All**: Lets you select a visible face, or any edge or vertex on a solid in the view.
- **Face**: Lets you select a face on any identified solid in the view. By default the nearest face is selected, with resets letting you select hidden faces on the same solid.
- **Edge**: Lets you select any edge on any solid in the view.
- **Vertex**: Lets you select any vertex on any solid in the view.
- **Distance**: If on, sets the distance that the face, edge, or vertex, is to be modified.
- **Extrude Faces**: If on, the selected face is extruded. If off, the selected face is moved and adjusted along with the adjacent sides.
• Full Dynamics: If on, dynamic display shows the modified element as you move the pointer. If off, an arrow graphic indicates the direction and extent of the modification.

Delete Solid Entity

This tool is in the 3D Modify toolbox. It is used to delete a solid entity from a solid other than a feature solid.

When selecting faces, the nearest face always is selected. You can rotate the view, or use another one, to select a hidden face. If need to delete multiple faces, you can select the additional faces with a Ctrl data point.

Conceptual Modeling Basics

Conceptual modeling tools let you interactively push-pull solids to modify their faces, edges, or vertices. This lets you quickly create and modify solids interactively.

Drawing lines on a Solid face

Figure 1. line drawn on face

In Figure 1, a line was drawn from the midpoint of the left edge of the Solid, to the midpoint of the right edge, using the Draw on Solid tool with the Draw Line option enabled.
In Figure 2, the line, which is now an edge, has been pulled in the Z axis using the Modify Solid Entity tool.

![Figure 2. Edge pulled in Z axis.](image)

The following images show the process of creating the final design concept using the previous tools.

![Figure 3. Draw on Solid](image)

![Figure 4. Modify Entity Extrude Face](image)

![Figure 5. Draw on Solid](image)

![Figure 6. Modify Entity other side](image)
Projecting lines on a Solid face

Basic MicroStation elements such as lines, shapes and B-spline curves can be projected on to Solid faces. These elements become edges after projection. These edges can be modified by extruding a face and moving an edge or vertex.

Figures 7, 8 and 9. Curves projected onto Solid face then modified into conceptual design

Updates to Conceptual Modeling in MicroStation V8i SELECTseries 1

Several new features have been added to Draw on Solid and Modify Solid Entity in MicroStation V8i SELECTseries 1.

Draw on Solid
Updates to Conceptual Modeling in MicroStation V8i SELECTseries 1

The Draw on Solid tool is changed to improve AccuDraw dynamics for the Draw Line, Draw Block, and Draw Circle modes. It eliminates the need for preliminary AccuDraw orientations prior to activating the tool.

In addition to the improved AccuDraw functionality, several tool settings have been added.

Keep Original Option for Imprinted Curve

The Imprint Curves mode now lets you retain the original imprint curve by activating a Keep Original option.

Offset Edge Beyond Face

The Offset Edges mode now lets you draw off the solid. Locate edges inward (towards the solid) or outward (away from solid) by moving the AccuDraw Compass in one of those directions.

![Diagram](image)

Left: Edges are offset inward when AccuDraw points towards the inside the selected edge.

Right: Edges are offset outward when AccuDraw points towards the outside the selected edge.

Lines offset away from the solid may be used for extruding additional solids. Any extrusion made from these offsets is not part of the original solid, but may be used in a Boolean operation to unite the two solids.

Multi-select Improvements for Modify Solid Entity Tools

The Modify Solid Entity tool lets you select multiple faces, edges, or vertices on a single solid by using the Face, Edge, and Vertex icons.

Pressing and holding the <Ctrl> key lets you select and deselect multiple entities. Clicking Reset changes the selections by replacing entities with adjacent ones.

AccuDraw reorients intuitively as entities are selected. The Face, Edge, and Vertex icons respond as follows:
Face

AccuDraw orients the drawing plane perpendicular to the last selected face so the Y and Z axes are coplanar (to the face), and the push-pull is along the X axis.

Edge

AccuDraw orients the drawing plane perpendicular to the last edge selected.

Vertex

Because a vertex is a point, AccuDraw has no reference plane to reorient itself to. Instead, AccuDraw orients the drawing plane to the last used orientation.
The Vertex icon differs from other multiple selections in how vertices are detected. For instance, if an edge is selected near its midpoint, both its vertices are highlighted. If only one is needed, then moving the pointer nearer to it causes the other to not be highlighted. If both are highlighted and selected, either may be deselected by pressing the <Ctrl> key.

Multiple selection works only with entities of a single solid. Results may vary depending upon the complexity of the resultant solids. Automatic AccuDraw orientations may need to be manually reoriented to achieve the desired geometry. The All icon does not support multiple selections. Use the Face, Edge, or Vertex icons.

Create a Conceptual Design

Exercise: Create the design shown in the image
1. Open the model Design Concept in Conceptual Modeling.dgn.
2. Turn on the Level designconcept_steps.

3. Select the Solids Modeling task.
4. Select Draw on Solid (T + 1), read the prompt, and in the tool settings select:
 Imprint Curves: Enabled

5. Imprint both the Octagonal shapes onto the base solid.
 Remember to select the Solid face onto which the curves are to be imprinted.

6. Using Modify Solid Entity (T+2), read the prompt and select the inner shape and extrude up by 0.5 meters.
 This will create the third step of the base. Now you will create the second step.

7. Using Modify Solid Entity (T + 2), read the prompt and select the face of outer imprinted shape and extrude that face 0.25 meters.
 This will create the second step in the design.

8. Turn on the Level designconcept_columns.
Column curves display.

9 Select Draw on Solid (T+1) and the Imprint Curves tool setting and imprint each of the columns onto the face of the base solid model.

10 Select Modify Solid Entity (T+2), enable the Select Face option, and extrude face of each imprinted column a distance of 10 meters.

Hint: To save time, turn on the Level designconcept_roof to display the a second completed model of the roof for this design.
This model used Draw Line on Solid and the Modify Solid Entity Vertex option to create the roof shape.

11 Use the Construct Union Tool to unite both models into one Solid model.

⇒ **Optional Exercise: Create the roof model**

1. Create the octagonal shape.
2. Extrude the shape 0.5 meter.
3. Draw lines on the solid.
4. Use Move Vertex.
Module Review

Now that you have completed this module, let’s measure what you have learned.

Questions

1. What is Push-pull modeling technology?
2. What do you use the Draw on Solid tool for?
3. What do you use the Modify Solid Entity tool for?
4. What methods can you use to select faces that are hidden?

Answers

1. Push-pull modeling technology lets you quickly create and modify solids interactively, by adding or removing faces and vertices and pushing and pulling faces and vertices.
2. To draw lines, shapes, and circles, directly onto the face of an existing solid, or to imprint a curve onto the face.
3. To manipulate a face, edge, or a vertex, of a solid by pushing or pulling it interactively.
4. Highlight the nearest face and the reset until you select hidden face. Rotate the view or use another view.